Identification of phenolic acids in rhizosphere soil of continuous cropping of Salvia miltiorrhiza. Bge

2021 ◽  
Vol 53 (2) ◽  
pp. 153-162
Author(s):  
H.H. Zhang ◽  
H.L. Feng ◽  
C.L. Zhang ◽  
X.D. Zhang ◽  
W.B. Jin ◽  
...  
Author(s):  
Yuan Zhao ◽  
Xiao–Meng Qin ◽  
Xue–Ping Tian ◽  
Tao Yang ◽  
Rong Deng ◽  
...  

Abstract Background Pinellia ternata (Thunb.) Breit. is a commonly used herb in traditional Chinese medicine, and the main raw material of various Chinese patent medicines. Continuous cropping obstacle (CCO) is the main factor leading to the decline of crop yields and quality. Methods Metagenomics sequencing technology was used to analyze the microbial community and functional genes of continuous cropping (CC) and control (CK) soils of P. ternata. In addition, differences in physicochemical properties, enzyme activities, microbial community composition and the abundance of functional genes in CC and CK were evaluated, as well as the relationship between these factors and CCO. Results Results indicated that CC of P. ternata led to the decline of rhizosphere soil pH, nutrient imbalance and enzyme activity reduction. Metagenomic analysis indicted that CC also changed the composition of the microbial community, causing an increase in the relative abundance of pathogenic microorganisms such as Fusarium, Klebsiella oxytoca and Pectobacterium carotovorum in the P. ternata rhizosphere. The relative abundance of potentially beneficial Burkholderia and Bradyrhizobium was recorded to decrease. Results also showed that there were considerable differences in CC and CK about the abundances of functional genes related to soil enzymes and the degradation of P. ternata allelochemicals, as well as the microbial groups which they belong. These results clarified the effects of CC on the microbial community structure and functional genes of soil. In addition, Burkholderia and Bradyrhizobium might play important roles in enhancing soil fertility and reducing the toxicity of phenolic acids in rhizosphere soil. Conclusions CC of P. ternata changed the physicochemical properties, microbial community and functional genes of rhizosphere soil. Burkholderia and Bradyrhizobium for enhancing soil fertility and reducing the toxicity of phenolic acids might be potentially beneficial. These results provide theoretical guidance for bioremediation of CCO soil of P. ternata and other staple crops. Graphic abstract


Planta Medica ◽  
2009 ◽  
Vol 75 (04) ◽  
Author(s):  
Y Xiao ◽  
B Yi ◽  
YB Duan ◽  
JF Chen ◽  
Y Liu ◽  
...  

2021 ◽  
Vol 53 (2) ◽  
pp. 243-258
Author(s):  
Zhu Zeng ◽  
Mei Yang ◽  
Dongqiang Guo ◽  
Shinan Liu ◽  
Shaoming Ye

2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


2019 ◽  
Vol 274 ◽  
pp. 368-375 ◽  
Author(s):  
Qiang Huang ◽  
Meihong Sun ◽  
Tingpan Yuan ◽  
Yu Wang ◽  
Min Shi ◽  
...  

2020 ◽  
Author(s):  
Huiqin Xie ◽  
Yongli Ku ◽  
Xiangna Yang ◽  
Le Cao ◽  
Xueli Mei ◽  
...  

Abstract Background: Melon (Cucumis melo L.) is one of the most important fruit crops grown in China. However, the yield and quality of melon have significantly declined under continuous cropping. Phenolic acids are believed to be associated with the continuous monocropping obstacle (CMO) and can influence plant microbe interactions. Coumaric acid (CA) is one of the major phenolic acids found in melon root exudates. The objectives of this study were to estimate the elimination of CA by the soil bacterium K3 as well as its effects on mitigating melon CMO. CA degradation was investigated by monitoring the CA retained in the growth medium using high performance liquid chromatography (HPLC). The effects of CA and K3 on rhizosphere soil microbial communities were investigated by the spread plate method and Illumina MiSeq sequencing. Furthermore, the effects of CA and K3 on melon seedling growth were measured under potted conditions. The changes in soil enzymes and fruit quality under K3 amendment were examined in a greenhouse experiment. Result:The results suggest that the addition of CA had the same result as the CMO, such as deterioration of the microbial community and slower growth of melon plants. HPLC and microbial analysis showed that K3 had a pronounced ability to decompose CA and could improve the soil microbial community environment. Soil inoculation with K3 agent could significantly improve the fruit quality of melon.Conclusion: Our results show that the effects of K3 in the soil are reflected by changes in populations and diversity of soil microbes and suggest that deterioration of microbial communities in soil might be associated with the growth constraint of melon in continuous monoculture systems.


Sign in / Sign up

Export Citation Format

Share Document