Changes in phenolic acids and aluminum forms in rhizosphere soil of Eucalyptus plantations of different ages

2021 ◽  
Vol 53 (2) ◽  
pp. 243-258
Author(s):  
Zhu Zeng ◽  
Mei Yang ◽  
Dongqiang Guo ◽  
Shinan Liu ◽  
Shaoming Ye
Author(s):  
Yuan Zhao ◽  
Xiao–Meng Qin ◽  
Xue–Ping Tian ◽  
Tao Yang ◽  
Rong Deng ◽  
...  

Abstract Background Pinellia ternata (Thunb.) Breit. is a commonly used herb in traditional Chinese medicine, and the main raw material of various Chinese patent medicines. Continuous cropping obstacle (CCO) is the main factor leading to the decline of crop yields and quality. Methods Metagenomics sequencing technology was used to analyze the microbial community and functional genes of continuous cropping (CC) and control (CK) soils of P. ternata. In addition, differences in physicochemical properties, enzyme activities, microbial community composition and the abundance of functional genes in CC and CK were evaluated, as well as the relationship between these factors and CCO. Results Results indicated that CC of P. ternata led to the decline of rhizosphere soil pH, nutrient imbalance and enzyme activity reduction. Metagenomic analysis indicted that CC also changed the composition of the microbial community, causing an increase in the relative abundance of pathogenic microorganisms such as Fusarium, Klebsiella oxytoca and Pectobacterium carotovorum in the P. ternata rhizosphere. The relative abundance of potentially beneficial Burkholderia and Bradyrhizobium was recorded to decrease. Results also showed that there were considerable differences in CC and CK about the abundances of functional genes related to soil enzymes and the degradation of P. ternata allelochemicals, as well as the microbial groups which they belong. These results clarified the effects of CC on the microbial community structure and functional genes of soil. In addition, Burkholderia and Bradyrhizobium might play important roles in enhancing soil fertility and reducing the toxicity of phenolic acids in rhizosphere soil. Conclusions CC of P. ternata changed the physicochemical properties, microbial community and functional genes of rhizosphere soil. Burkholderia and Bradyrhizobium for enhancing soil fertility and reducing the toxicity of phenolic acids might be potentially beneficial. These results provide theoretical guidance for bioremediation of CCO soil of P. ternata and other staple crops. Graphic abstract


2021 ◽  
Vol 53 (2) ◽  
pp. 153-162
Author(s):  
H.H. Zhang ◽  
H.L. Feng ◽  
C.L. Zhang ◽  
X.D. Zhang ◽  
W.B. Jin ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1083
Author(s):  
Xiu Lan ◽  
Hu Du ◽  
Wanxia Peng ◽  
Yongxian Liu ◽  
Zhilian Fang ◽  
...  

We selected five different ages of eucalyptus plantation sites to understand the culturable microbial functional diversity and the ecological functions of the soil from the eucalyptus plantations in Guangxi. We investigated the carbon source metabolic activity and diversity features of surface soil microbes using the Biolog EcoPlate method (Biolog Inc., Hayward, CA, USA), along with the microbial functional diversity and physicochemical properties of the soil. The results suggest that the carbon source utilization capacity of the soil microbes at various forest ages manifested as 3-year-old > 5-year-old > 2-year-old > 1-year-old > 8-year-old. The abundance, Shannon–Weiner, Pielou, Simpson, and McIntosh diversity indices of the soil microbes initially increased and then decreased with further increase in forest age, with the highest levels in 3- and 5-year-old forests. As per the heatmap analysis, the 3-year-old forest could metabolize the most carbon source species, while the 1- and 8-year-old forests could metabolize the least. Carbohydrates were the most frequently metabolized carbon source. The principal component analysis (PCA) shows that PC1 and PC2 extracted from the 31 factors have 52.42% and 13.39% of the variable variance, respectively. Carbohydrates contributed most to PCA, followed by amino acids and carboxylic acids, and phenolic acids and amines, the least. Canonical correspondence analysis shows that total carbon, alkali-hydrolyzable nitrogen, total nitrogen, total potassium, and pH negatively correlate with soil microbial functional diversity, whereas total and available phosphorus positively correlate with it. To sum up, the soil microbial community structure of eucalyptus plantations at various ages reflects the soil environmental conditions and nutrient availability, which is of great significance in the efficient management and high-quality operation of their plantations in Guangxi.


2020 ◽  
Vol 8 (6) ◽  
pp. 806
Author(s):  
Lv Su ◽  
Lifan Zhang ◽  
Duoqian Nie ◽  
Eiko E. Kuramae ◽  
Biao Shen ◽  
...  

Soil-borne pathogen invasions can significantly change the microbial communities of the host rhizosphere. However, whether bacterial Ralstonia solanacearum pathogen invasion influences the abundance of fungal pathogens remains unclear. In this study, we combined high-throughput sequencing, qPCR, liquid chromatography and soil culture experiments to analyze the rhizosphere fungal composition, co-occurrence of fungal communities, copy numbers of functional genes, contents of phenolic acids and their associations in healthy and bacterial wilt-diseased tomato plants. We found that R. solanacearum invasion increased the abundance of the soil-borne pathogen Fusarium solani. The concentrations of three phenolic acids in the rhizosphere soil of bacterial wilt-diseased tomato plants were significantly higher than those in the rhizosphere soil of healthy tomato plants. In addition, the increased concentrations of phenolic acids significantly stimulated F. solani growth in the soil. Furthermore, a simple fungal network with fewer links, nodes and hubs (highly connected nodes) was found in the diseased tomato plant rhizosphere. These results indicate that once the symptom of bacterial wilt disease is observed in tomato, the roots of the wilt-diseased tomato plants need to be removed in a timely manner to prevent the enrichment of other fungal soil-borne pathogens. These findings provide some ecological clues for the mixed co-occurrence of bacterial wilt disease and other fungal soil-borne diseases.


2016 ◽  
Vol 76 (3) ◽  
pp. 583-591 ◽  
Author(s):  
L. I. Jacoboski ◽  
A. de Mendonça-Lima ◽  
S. M. Hartz

Abstract Replacement of native habitats by tree plantations has increased dramatically in Brazil, resulting in loss of structural components for birds, such as appropriate substrates for foraging and nesting. Tree plantations can also reduce faunal richness and change the composition of bird species. This study evaluated the structure of avian communities in eucalyptus plantations of different ages and in a native forest. We classified species as habitat specialists or generalists, and assessed if the species found in eucalyptus plantations are a subset of the species that occur in the native forest. Forty-one sampling sites were evaluated, with three point counts each, in a native forest and in eucalyptus plantations of four different ages. A total of 71 bird species were identified. Species richness and abundance were higher in the native forest, reflecting the greater heterogeneity of the habitat. The composition of bird species also differed between the native forest and plantations. The species recorded in the plantations represented a subset of the species of the native forest, with a predominance of generalist species. These species are more tolerant of habitat changes and are able to use the plantations. The commercial plantations studied here can serve as a main or occasional habitat for these generalists, especially for those that are semi-dependent on edge and forest. The bird species most affected by silviculture are those that are typical of open grasslands, and those that are highly dependent on well-preserved forests.


2020 ◽  
Vol 51 (2) ◽  
pp. 221-236
Author(s):  
Ke-Bo Liao ◽  
Mei Yang ◽  
Han-Dong Gao ◽  
Fei Cheng

We studied the allelopathic effects of phenolic acids in the Eucalyptus plantations soil on Eucalyptus seedlings growth. Based on the actual content of p-hydroxybenzoic acid, vanillic acid, ferulic acid, coumaric acid, benzoic acid and salicylic acids in soil of Eucalyptus grandis × Eucalyptus urophylla plantations (X), concentration gradients of each phenolic acid (0.5X, 1.0X, 2.0X) were prepared to apply in potted Eucalyptus seedlings. The results showed that each of the 6-phenolic acids significantly (p < 0.05) promoted or inhibited the stomatal conductance, intercellular CO2 concentration, transpiration rate, chlorophyll fluorescence (minimal fluorescence of dark-adapted leaves, maximal fluorescence of dark-adapted leaves, variable fluorescence of dark-adapted leaves, maximum quantum yield of PSII photochemistry). These treatments also influenced the water-use efficiency and growth parameters (height, root biomass, stem biomass, leaf biomass, shoot biomass, total biomass and root/shoot ratio) of Eucalyptus seedlings. Whereas, none of the test phenolic acids affected the ground diameter or net photosynthetic rate of seedlings. This study indicated that further experiments in Eucalyptus plantations are required to find, whether phenolic acids in Eucalyptus plantations soil significantly affected the growth of Eucalyptus trees under natural conditions and how to regulate the phenolic acids contents in forest soil?


Sign in / Sign up

Export Citation Format

Share Document