scholarly journals The glacial history of Rocky Top cirque, southeast Fiordland, New Zealand

2021 ◽  
Author(s):  
Emily Moore

<p><b>Understanding natural climate variability is a fundamental goal of paleoclimate science. Temperate mountain glaciers are sensitive to climate variability, changing volume, and thus thickness and length, in response to changes in temperature and precipitation. Glaciers deposit moraines at their margins, which if well-preserved may provide evidence of glacier length fluctuations following glacial retreat. Therefore mountain glaciers can be used as proxies to investigate past climatic changes, offering the potential to reconstruct the timing and magnitude of natural climate variability and paleoclimate for the former glacier extent(s). </b></p><p>This study applies methods of detailed geomorphological mapping and cosmogenic 10Be surface exposure dating to establish a high-precision moraine chronology and examine the timing and magnitude of glacier length changes at Rocky Top cirque. A quantitative reconstruction of paleoclimate for the identified former glacier extents was produced using an equilibrium-line altitude (ELA) reconstruction method and application of a temperature lapse rate. Findings show a clear pattern of glacial retreat at the end of the Last Glacial Maximum, with exposure ages from moraine boulders successfully constraining the timing of five distinct periods of glacier readvance or standstills. The most recent glacial event at Rocky Top cirque occurred between 17342 ± 172 yrs BP and during this period the ELA was depressed by 611 m. The second innermost moraine produced an indistinguishable age of 17196 ± 220 yrs BP and had an ELA depression of 616 m, indicating rapid glacial retreat. Progressively older moraines produced surface exposure ages of 18709 ± 237 and 19629 ± 308 yrs BP, with ELA depressions of 618 and 626 m respectively. The oldest moraine of 34608 ± 8437 yrs BP had insufficient geomorphic constraint to produce an ELA. Paleoclimate reconstruction results suggest that a best estimate of paleotemperature at the time of moraine formation (~19-17 ka) was between 3.2 ± 0.8 to 3.3 ± 0.8°C cooler than present-day. </p><p>Net retreat of the former glacier is consistent with other similar moraine chronologies from the Southern Alps, which supports the regional trend and suggests that glaciers in the Southern Alps responded to common climatic forcings between ~19-17 ka. </p>

2021 ◽  
Author(s):  
Emily Moore

<p><b>Understanding natural climate variability is a fundamental goal of paleoclimate science. Temperate mountain glaciers are sensitive to climate variability, changing volume, and thus thickness and length, in response to changes in temperature and precipitation. Glaciers deposit moraines at their margins, which if well-preserved may provide evidence of glacier length fluctuations following glacial retreat. Therefore mountain glaciers can be used as proxies to investigate past climatic changes, offering the potential to reconstruct the timing and magnitude of natural climate variability and paleoclimate for the former glacier extent(s). </b></p><p>This study applies methods of detailed geomorphological mapping and cosmogenic 10Be surface exposure dating to establish a high-precision moraine chronology and examine the timing and magnitude of glacier length changes at Rocky Top cirque. A quantitative reconstruction of paleoclimate for the identified former glacier extents was produced using an equilibrium-line altitude (ELA) reconstruction method and application of a temperature lapse rate. Findings show a clear pattern of glacial retreat at the end of the Last Glacial Maximum, with exposure ages from moraine boulders successfully constraining the timing of five distinct periods of glacier readvance or standstills. The most recent glacial event at Rocky Top cirque occurred between 17342 ± 172 yrs BP and during this period the ELA was depressed by 611 m. The second innermost moraine produced an indistinguishable age of 17196 ± 220 yrs BP and had an ELA depression of 616 m, indicating rapid glacial retreat. Progressively older moraines produced surface exposure ages of 18709 ± 237 and 19629 ± 308 yrs BP, with ELA depressions of 618 and 626 m respectively. The oldest moraine of 34608 ± 8437 yrs BP had insufficient geomorphic constraint to produce an ELA. Paleoclimate reconstruction results suggest that a best estimate of paleotemperature at the time of moraine formation (~19-17 ka) was between 3.2 ± 0.8 to 3.3 ± 0.8°C cooler than present-day. </p><p>Net retreat of the former glacier is consistent with other similar moraine chronologies from the Southern Alps, which supports the regional trend and suggests that glaciers in the Southern Alps responded to common climatic forcings between ~19-17 ka. </p>


2021 ◽  
Author(s):  
Mark D. Risser ◽  
Michael F. Wehner ◽  
John P. O’Brien ◽  
Christina M. Patricola ◽  
Travis A. O’Brien ◽  
...  

AbstractWhile various studies explore the relationship between individual sources of climate variability and extreme precipitation, there is a need for improved understanding of how these physical phenomena simultaneously influence precipitation in the observational record across the contiguous United States. In this work, we introduce a single framework for characterizing the historical signal (anthropogenic forcing) and noise (natural variability) in seasonal mean and extreme precipitation. An important aspect of our analysis is that we simultaneously isolate the individual effects of seven modes of variability while explicitly controlling for joint inter-mode relationships. Our method utilizes a spatial statistical component that uses in situ measurements to resolve relationships to their native scales; furthermore, we use a data-driven procedure to robustly determine statistical significance. In Part I of this work we focus on natural climate variability: detection is mostly limited to DJF and SON for the modes of variability considered, with the El Niño/Southern Oscillation, the Pacific–North American pattern, and the North Atlantic Oscillation exhibiting the largest influence. Across all climate indices considered, the signals are larger and can be detected more clearly for seasonal total versus extreme precipitation. We are able to detect at least some significant relationships in all seasons in spite of extremely large (> 95%) background variability in both mean and extreme precipitation. Furthermore, we specifically quantify how the spatial aspect of our analysis reduces uncertainty and increases detection of statistical significance while also discovering results that quantify the complex interconnected relationships between climate drivers and seasonal precipitation.


2020 ◽  
Author(s):  
Alan Huston ◽  
Nicholas Siler ◽  
Gerard H. Roe ◽  
Erin Pettit ◽  
Nathan J. Steiger

Abstract. Changes in glacier length reflect the integrated response to local fluctuations in temperature and precipitation resulting from both external forcing (e.g., volcanic eruptions or anthropogenic CO2) and internal climate variability. In order to interpret the climate history reflected in the glacier moraine record, therefore, the influence of both sources of climate variability must be considered. Here we study the last millennium of glacier length variability across the globe using a simple dynamic glacier model, which we force with temperature and precipitation time series from a 13-member ensemble of simulations from a global climate model. The ensemble allows us to quantify the contributions to glacier length variability from external forcing (given by the ensemble mean) and internal variability (given by the ensemble spread). Within this framework, we find that internal variability drives most length changes in mountain glaciers that have a response timescale of less than a few decades. However, for glaciers with longer response timescales (more than a few decades) external forcing has a greater influence than internal variability. We further find that external forcing also dominates when the response of glaciers from widely separated regions is averaged. Single-forcing simulations indicate that most of the forced response over the last millennium, pre-anthropogenic warming, has been driven by global-scale temperature change associated with volcanic aerosols.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marcel E. Visser ◽  
Melanie Lindner ◽  
Phillip Gienapp ◽  
Matthew C. Long ◽  
Stephanie Jenouvrier

Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit ( Parus major ), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1549-1553
Author(s):  
Timothy J Osborn ◽  
Philip D Jones ◽  
Edward R Cook

Keith R Briffa was one of the most influential palaeoclimatologists of the last 30 years. His primary research interests lay in Late-Holocene climate change with a geographical emphasis on northern Eurasia. His greatest impact was in the field of dendroclimatology, a field that he helped to shape. His contributions have been seminal to the development of sound methods for tree-ring analysis and in their proper application to allow the interpretation of climate variability from tree rings. This led to the development of many important records that allow us to understand natural climate variability on timescales from years to millennia and to set recent climatic trends in their historical context.


Sign in / Sign up

Export Citation Format

Share Document