scholarly journals Robust Methods for Analysing Quantitative Trait Loci

2021 ◽  
Author(s):  
◽  
Nuovella Williams

<p>The advent of new technology for extracting genetic information from tissue samples has increased the availability of suitable data for finding genes controlling complex traits in plants, animals and humans. Quantitative trait locus (QTL) analysis relies on statistical methods to interpret genetic data in the presence of phenotype data and possibly other factors such as environmental factors. The goal is to both detect the presence of QTL with significant effects on trait value as well as to estimate their locations on the genome relative to those of known markers. This thesis reviews commonly used statistical techniques for QTL mapping in experimental populations. Regression and likelihood methods are discussed. The mixture-modelling approach to QTL mapping is explored in some detail. This thesis presents new matrix formulas for exact and convenient calculation of both the Observed and Fisher information matrices in the context of Multinomial mixtures of Univariate Normal distributions. An extension to Composite Interval mapping is proposed, together with a hypothesis testing strategy which is robust enough to de- tect existing QTL in the presence of slight deviations from model assumptions while reducing false detections.</p>

2021 ◽  
Author(s):  
◽  
Nuovella Williams

<p>The advent of new technology for extracting genetic information from tissue samples has increased the availability of suitable data for finding genes controlling complex traits in plants, animals and humans. Quantitative trait locus (QTL) analysis relies on statistical methods to interpret genetic data in the presence of phenotype data and possibly other factors such as environmental factors. The goal is to both detect the presence of QTL with significant effects on trait value as well as to estimate their locations on the genome relative to those of known markers. This thesis reviews commonly used statistical techniques for QTL mapping in experimental populations. Regression and likelihood methods are discussed. The mixture-modelling approach to QTL mapping is explored in some detail. This thesis presents new matrix formulas for exact and convenient calculation of both the Observed and Fisher information matrices in the context of Multinomial mixtures of Univariate Normal distributions. An extension to Composite Interval mapping is proposed, together with a hypothesis testing strategy which is robust enough to de- tect existing QTL in the presence of slight deviations from model assumptions while reducing false detections.</p>


2011 ◽  
Vol 7 (6) ◽  
pp. 896-898 ◽  
Author(s):  
Alison G. Scoville ◽  
Young Wha Lee ◽  
John H. Willis ◽  
John K. Kelly

Most natural populations display substantial genetic variation in behaviour, morphology, physiology, life history and the susceptibility to disease. A major challenge is to determine the contributions of individual loci to variation in complex traits. Quantitative trait locus (QTL) mapping has identified genomic regions affecting ecologically significant traits of many species. In nearly all cases, however, the importance of these QTLs to population variation remains unclear. In this paper, we apply a novel experimental method to parse the genetic variance of floral traits of the annual plant Mimulus guttatus into contributions of individual QTLs. We first use QTL-mapping to identify nine loci and then conduct a population-based breeding experiment to estimate V Q , the genetic variance attributable to each QTL. We find that three QTLs with moderate effects explain up to one-third of the genetic variance in the natural population. Variation at these loci is probably maintained by some form of balancing selection. Notably, the largest effect QTLs were relatively minor in their contribution to heritability.


2021 ◽  
Author(s):  
Alex N. Nguyen Ba ◽  
Katherine R. Lawrence ◽  
Artur Rego-Costa ◽  
Shreyas Gopalakrishnan ◽  
Daniel Temko ◽  
...  

Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.Significance statementUnderstanding the genetic basis of important phenotypes is a central goal of genetics. However, the highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies (GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a scale two orders of magnitude larger than the previous state of the art. The resulting increase in power reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems biology, and have implications for large-scale GWAS in human populations.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 855-865 ◽  
Author(s):  
Chen-Hung Kao

AbstractThe differences between maximum-likelihood (ML) and regression (REG) interval mapping in the analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The analytical investigation is based on the comparison of the solution sets of the ML and REG methods in the estimation of QTL parameters. Their differences are found to relate to the similarity between the conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error (MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL detection between the two methods become larger as (1) the proportion of variance explained by QTL becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is biased in the estimation of the proportion of variance explained by QTL, and it may have a serious problem in detecting closely linked QTL when compared to the ML method. In general, the differences between the two methods may be minor, but can be significant when QTL interact or are closely linked. The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG interval mapping. The REG method is faster in computation, especially when the number of QTL considered in the model is large. Recognizing the factors affecting the differences between REG and ML interval mapping can help an efficient strategy, using both methods in QTL mapping to be outlined.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1909-1921
Author(s):  
Christian Peter Klingenberg ◽  
Larry J Leamy ◽  
James M Cheverud

Abstract The mouse mandible has long served as a model system for complex morphological structures. Here we use new methodology based on geometric morphometrics to test the hypothesis that the mandible consists of two main modules, the alveolar region and the ascending ramus, and that this modularity is reflected in the effects of quantitative trait loci (QTL). The shape of each mandible was analyzed by the positions of 16 morphological landmarks and these data were analyzed using Procrustes analysis. Interval mapping in the F2 generation from intercrosses of the LG/J and SM/J strains revealed 33 QTL affecting mandible shape. The QTL effects corresponded to a variety of shape changes, but ordination or a parametric bootstrap test of clustering did not reveal any distinct groups of QTL that would affect primarily one module or the other. The correlations of landmark positions between the two modules tended to be lower than the correlations between arbitrary subsets of landmarks, indicating that the modules were relatively independent of each other and confirming the hypothesized location of the boundary between them. While these results are in agreement with the hypothesis of modularity, they also underscore that modularity is a question of the relative degrees to which QTL contribute to different traits, rather than a question of discrete sets of QTL contributing to discrete sets of traits.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1489-1506
Author(s):  
Kathleen D Jermstad ◽  
Daniel L Bassoni ◽  
Keith S Jech ◽  
Gary A Ritchie ◽  
Nicholas C Wheeler ◽  
...  

Abstract Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring temperatures. A three-generation mapping population of 460 cloned progeny was used for genetic mapping and phenotypic evaluations. An all-marker interval mapping method was used for scanning the genome for the presence of QTL and single-factor ANOVA was used for estimating QTL-by-environment interactions. A modest number of QTL were detected per trait, with individual QTL explaining up to 9.5% of the phenotypic variation. Two QTL-by-treatment interactions were found for growth initiation, whereas several QTL-by-treatment interactions were detected among growth cessation traits. This is the first report of QTL interactions with specific environmental signals in forest trees and will assist in the identification of candidate genes controlling these important adaptive traits in perennial plants.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 581-588
Author(s):  
Mohamed A F Noor ◽  
Aimee L Cunningham ◽  
John C Larkin

Abstract We examine the effect of variation in gene density per centimorgan on quantitative trait locus (QTL) mapping studies using data from the Drosophila melanogaster genome project and documented regional rates of recombination. There is tremendous variation in gene density per centimorgan across this genome, and we observe that this variation can cause systematic biases in QTL mapping studies. Specifically, in our simulated mapping experiments of 50 equal-effect QTL distributed randomly across the physical genome, very strong QTL are consistently detected near the centromeres of the two major autosomes, and few or no QTL are often detected on the X chromosome. This pattern persisted with varying heritability, marker density, QTL effect sizes, and transgressive segregation. Our results are consistent with empirical data collected from QTL mapping studies of this species and its close relatives, and they explain the “small X-effect” that has been documented in genetic studies of sexual isolation in the D. melanogaster group. Because of the biases resulting from recombination rate variation, results of QTL mapping studies should be taken as hypotheses to be tested by additional genetic methods, particularly in species for which detailed genetic and physical genome maps are not available.


2014 ◽  
Author(s):  
Karl W Broman

Every data visualization can be improved with some level of interactivity. Interactive graphics hold particular promise for the exploration of high-dimensional data. R/qtlcharts is an R package to create interactive graphics for experiments to map quantitative trait loci (QTL; genetic loci that influence quantitative traits). R/qtlcharts serves as a companion to the R/qtl package, providing interactive versions of R/qtl's static graphs, as well as additional interactive graphs for the exploration of high-dimensional genotype and phenotype data.


Sign in / Sign up

Export Citation Format

Share Document