scholarly journals Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand

2021 ◽  
Author(s):  
◽  
Gareth Kear

<p>Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows have also led to several 'dry-year' events over the last decade and dedicated fast-start 'peaker' capacity may also be required to support wind power as it approaches a 20% generation share. In this research, the New Zealand electricity industry has been surveyed in regard to the feasibility of reducing CO2-e emissions through the introduction of pumped hydroelectricity and utility-scale batteries by 2025. A desk-based review of the economic costs of these technologies has also been performed and their drivers and barriers critically assessed. Most respondents to the survey projected that peak power demand will continue to increase and this will result in new-build centralised (~150 MW) thermal reserve power sources. In New Zealand, the costs of pumped hydro and batteries are seen to be prohibitive to their introduction, even though they are almost universally assumed to be technically capable of providing renewables support and peak power adequacy. The perception of the poor economic viability of pumped hydro may, in part, be due to the relatively high capital cost estimate associated with the Manorburn-Onslow proposal (~NZ$3 billion). This research has shown, however, that smaller, 'more-internationally-representative' pumped hydro schemes, if available in NZ with low associated environmental impact, are cost-competitive with thermal peakers, especially diesel peakers. Conversely, utility-scale batteries have very high storage costs per kWh and are most likely to be used only for very high value applications where there is a strong technical advantage, such as the six-second fast instantaneous reserve.</p>

2021 ◽  
Author(s):  
◽  
Gareth Kear

<p>Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows have also led to several 'dry-year' events over the last decade and dedicated fast-start 'peaker' capacity may also be required to support wind power as it approaches a 20% generation share. In this research, the New Zealand electricity industry has been surveyed in regard to the feasibility of reducing CO2-e emissions through the introduction of pumped hydroelectricity and utility-scale batteries by 2025. A desk-based review of the economic costs of these technologies has also been performed and their drivers and barriers critically assessed. Most respondents to the survey projected that peak power demand will continue to increase and this will result in new-build centralised (~150 MW) thermal reserve power sources. In New Zealand, the costs of pumped hydro and batteries are seen to be prohibitive to their introduction, even though they are almost universally assumed to be technically capable of providing renewables support and peak power adequacy. The perception of the poor economic viability of pumped hydro may, in part, be due to the relatively high capital cost estimate associated with the Manorburn-Onslow proposal (~NZ$3 billion). This research has shown, however, that smaller, 'more-internationally-representative' pumped hydro schemes, if available in NZ with low associated environmental impact, are cost-competitive with thermal peakers, especially diesel peakers. Conversely, utility-scale batteries have very high storage costs per kWh and are most likely to be used only for very high value applications where there is a strong technical advantage, such as the six-second fast instantaneous reserve.</p>


2021 ◽  
pp. 251484862199112
Author(s):  
Lucy Baker

Utility-scale renewable electricity generation is essential to decarbonisation as well as to ensuring affordable and secure electricity supplies around the world. Yet thus far there has been limited critical thinking dedicated to the complexities behind the finance and ownership of this new infrastructure and how national and local stakeholders should participate in and benefit from its development, particularly in contexts of high inequality in low- and middle-income countries. As the global renewable energy industry becomes increasingly consolidated and financialised, evidence from a number of countries suggests that despite the pro-environmental outcomes of utility-scale renewable electricity generation, the processes and institutions that procure and finance it have often failed to include or benefit individuals and communities living in the national and local vicinity. This paper therefore sets two key competing objectives of renewable electricity generation in context: as a predictable, long-term revenue stream for investors, and as a mechanism for socio-economic development and community empowerment. Building on scholarship from human geography, development studies and sustainability transitions, my analysis takes forward understandings of the role of finance in utility-scale renewable electricity generation as a key aspect of the political economy of the energy transition. In exploring the evolution of renewable electricity as a new and rapidly emerging asset class I consider how its development is increasingly determined by the frameworks and logics of finance and investment. Drawing on examples from South Africa and Mexico, I address the following questions: What are the evolving configurations and processes of finance and investment in utility-scale renewable electricity generation? How have they been facilitated? And what tensions have arisen from their implementation at the national and local level?


2000 ◽  
Author(s):  
Wen Li ◽  
Ronald A. Roy ◽  
Robin O. Cleveland ◽  
Lawrence J. Berg ◽  
Charles A. DiMarzio

Abstract A short pulse of laser light can act as a source of acoustic energy for acoustic imaging. Although there are a number of mechanisms by which the light pulse may generate sound, all require a pulse of high peak power density and short duration. In this work, we address examples where the material is highly absorbing at the laser wavelength, and the sound is generated near the surface. In these cases, there exist two different mechanisms which can convert the light to sound. The first is heating followed by expansion, and the second is generation of a plasma in the air above the surface. In the first case, sound generation occurs in the medium of interest and the energy efficiency can be very high, in the sense that no reflection losses occur. We present two applications from our own research.


2009 ◽  
Vol 1 (1) ◽  
pp. 1457-1464 ◽  
Author(s):  
M.R. Haines ◽  
J.E. Davison

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2542-2550

In this modern epoch Sustainable Energy Resources (SER) takes an upper hand in meeting the rise in power demand. Over the last few years, the increasing electrical power demand has prompted an incredible need for power from sustainable energy sources. The irradiation from solar, wind turbines are pondered as the main source of power generation since they supplement one another. For the general development of the economy, it is important that the agro-based economy would lead to the growth of the country. It is neither achievable nor affordable to dispatch power in the far away locales for a scarcely populated town. In this paper, the supplanting of energy sources with the sustainable power sources utilizing HOMER programming is performed. An independent sustainable power sources (ISPS) is used to meet the load and the cost is evaluated. The work is performed for real time data under different schemes like PV, wind and its combination. The optimization of operating cost under two scenario of using the ISPS (either PV or Wind) and using both PV & wind for real-time input taken from Sicud village in Philippines and Laboratory load data of SRMIST in India is performed. The comparison of the operating cost for the two region under two cases is executed and analyzed.


Sign in / Sign up

Export Citation Format

Share Document