scholarly journals Natural Buffer Placement and Downstream Flood Mitigation in Rural Hawkes Bay, New Zealand

2021 ◽  
Author(s):  
◽  
John Ballinger

<p>Small scale field studies from around the world have shown that agricultural land management has a significant effect on the timing and magnitude of flood peaks. One land management technique called ‘soft’ engineering utilises strategically planted trees, wetlands, and other natural buffers to temporarily store flood water in upland catchments. This helps mitigate lowland flooding by delaying the release of water into the river system which dampens the peaky response and therefore reduces the pressure on urban areas downstream. With these issues in mind, this MSc thesis examines the landscape benefits arising from both existing and optimally located natural buffers within the Hawkes Bay region of New Zealand, quantifying their capacity to mitigate flooding under varying soil and climatic conditions through; a) Collating existing data and knowledge; b) Collecting further targeted data on buffer impacts; and c) Using this data to inform and apply a flood mitigation model to examine options for buffer placement and simulate flow response times under different land management scenarios. The ability of any model to make practical predictions is largely dependent on the quality of data input. This research established that the nationally available 25m Digital Elevation Models (DEMs) are not suitable for detailed hydrological modelling at the farm scale. A 10m DEM was the coarsest resolution considered appropriate. In addition, the nationally available soil information while generally appropriate benefited from moderate “ground truthing” to better represent the soils “true” hydraulic properties. Further targeted data relating to the influence of trees on soil infiltration and storage capacity was collected. Measurements of hydraulic conductivity found that soil under individual populous spp. trees and a Cupresses macrocarpa shelterbelt were 3.1 and 5.5 times as conductive respectively as soil under pasture at 10m from the trees. The soil was also less compacted near the trees when the livestock were excluded. This improved the structure and thus water storage capacity of soil. These results informed the buffer assumptions when simulating rainfall-runoff under the different land management scenarios. The modelling results suggest that the capacity of natural buffers to reduce quickflow is strongly influenced by soil antecedent conditions. Under very wet soil conditions the buffers had little extra capacity to store water when subjected to large rainfall events. In drier soil conditions large rainfall events were absorbed by the buffers with considerable reductions in quickflow. This suggests that buffers occupying a relatively small amount of land but sited in areas of high flow accumulation could prove very effective at mitigating intense rainfall, especially in drier summer months e.g. sub-tropical storms. Although the results from the modelling are speculative, the outcome is never the less encouraging. Results from both the model simulations and field measurements of hydraulic conductivity suggest that strategically placed ponds and small scale planting can be used to improve the infiltration and water storage capacity of extensive areas of grazed pasture. This will likely reduce runoff and erosion rates and thereby improve stream water quality and farm productivity at both the farm and wider catchment scale. Considering that flooding is the most frequent and costly natural hazard worldwide, natural buffers with their low maintenance costs and recognized ecosystem co-benefits could offer a cost effective and sustainable solution as part of future flood management planning.</p>

2021 ◽  
Author(s):  
◽  
John Ballinger

<p>Small scale field studies from around the world have shown that agricultural land management has a significant effect on the timing and magnitude of flood peaks. One land management technique called ‘soft’ engineering utilises strategically planted trees, wetlands, and other natural buffers to temporarily store flood water in upland catchments. This helps mitigate lowland flooding by delaying the release of water into the river system which dampens the peaky response and therefore reduces the pressure on urban areas downstream. With these issues in mind, this MSc thesis examines the landscape benefits arising from both existing and optimally located natural buffers within the Hawkes Bay region of New Zealand, quantifying their capacity to mitigate flooding under varying soil and climatic conditions through; a) Collating existing data and knowledge; b) Collecting further targeted data on buffer impacts; and c) Using this data to inform and apply a flood mitigation model to examine options for buffer placement and simulate flow response times under different land management scenarios. The ability of any model to make practical predictions is largely dependent on the quality of data input. This research established that the nationally available 25m Digital Elevation Models (DEMs) are not suitable for detailed hydrological modelling at the farm scale. A 10m DEM was the coarsest resolution considered appropriate. In addition, the nationally available soil information while generally appropriate benefited from moderate “ground truthing” to better represent the soils “true” hydraulic properties. Further targeted data relating to the influence of trees on soil infiltration and storage capacity was collected. Measurements of hydraulic conductivity found that soil under individual populous spp. trees and a Cupresses macrocarpa shelterbelt were 3.1 and 5.5 times as conductive respectively as soil under pasture at 10m from the trees. The soil was also less compacted near the trees when the livestock were excluded. This improved the structure and thus water storage capacity of soil. These results informed the buffer assumptions when simulating rainfall-runoff under the different land management scenarios. The modelling results suggest that the capacity of natural buffers to reduce quickflow is strongly influenced by soil antecedent conditions. Under very wet soil conditions the buffers had little extra capacity to store water when subjected to large rainfall events. In drier soil conditions large rainfall events were absorbed by the buffers with considerable reductions in quickflow. This suggests that buffers occupying a relatively small amount of land but sited in areas of high flow accumulation could prove very effective at mitigating intense rainfall, especially in drier summer months e.g. sub-tropical storms. Although the results from the modelling are speculative, the outcome is never the less encouraging. Results from both the model simulations and field measurements of hydraulic conductivity suggest that strategically placed ponds and small scale planting can be used to improve the infiltration and water storage capacity of extensive areas of grazed pasture. This will likely reduce runoff and erosion rates and thereby improve stream water quality and farm productivity at both the farm and wider catchment scale. Considering that flooding is the most frequent and costly natural hazard worldwide, natural buffers with their low maintenance costs and recognized ecosystem co-benefits could offer a cost effective and sustainable solution as part of future flood management planning.</p>


1971 ◽  
Vol 51 (2) ◽  
pp. 269-276 ◽  
Author(s):  
D. C. PARSONS ◽  
L. M. LAVKULICH ◽  
A. L. VAN RYSWYK

The dominant range grass species of climax stands in the Kamloops area of British Columbia is Agropyron spicatum, but throughout this area there are localized regions where Stipa comata is dominant. It was believed that certain edaphic factors influenced the composition of the two grassland stand types. Stipa comata was observed to be growing on gravelly and coarse textured soils with low available water storage capacity, while Agropyron spicatum grew on finer soils with higher water storage capacities. At the beginning of the growing season, soils supporting Agropyron had a higher field moisture content than did nearby soils supporting Stipa. However, Stipa was observed to develop faster and is believed to be more highly adapted to droughty soil conditions.


2021 ◽  
Author(s):  
Marc-André Bourgault ◽  
Michel Bechtold ◽  
Joseph Holden ◽  
Antony Blundell ◽  
Ullrich Dettman ◽  
...  

&lt;p&gt;In wetlands, the water budget is traditionally quantified by measuring the hydrologic components including precipitation, evapotranspiration and surface water-groundwater inflows and outflows. However, the reliability of measurements is often questioned due to the difficulty of rigorously monitoring all components of the water budget. Quantifying the rainfall event to water table response ratio is an alternative approach with minimal need for data commonly collected in peatland studies. However, the method has been used only in a limited number of biophysical settings including different microforms, hydroclimatic and hydrogeological settings. The objectives of this study are to quantify the reactivity of the water table to precipitation for different pristine peatlands located in different hydroclimatic conditions and to provide quantitative assessments of water storage of as many peatlands as possible. To do so, site-specific hourly water table and precipitation measurements was collected from northern peatlands worldwide. In total, data from more than 30 sites were retrieved from 8 research groups. For all peatlands, water-table depths varied between 80 cm below the peat surface and 10 cm above the peat surface. The results highlight that the hydrology of all peatlands is characterized by a shift from an environment that can store water to an environment that contributes to rapid outflow, and this is a uniform feature across sites. However, for peatlands with the lowest water storage capacities, this shift occurs during relatively moderate rainfall events (40 mm) or successive small rainfall events. Blanket peat bog best embodied this type of hydrological response. For peatlands with the highest water storage capacity, this shift occurs following multiple moderate to large precipitation events (40 mm &amp;#8211; 80 mm) and it is strongly enhanced by the shift from high to low evaporative periods. The peatlands with the highest storage capacity are raised bogs with deep water-table. These conditions are best observed in peatlands located in geographical settings with high evaporation rates. Among all the peatlands, maximum water storage capacity for given rainfall events was equal to &amp;#8776;150 mm. These analyses also confirm that the water table rise caused by precipitation events contain sufficient information to constrain water storage variations around monitored wells peatlands for a wide array of biophysical settings.&lt;/p&gt;


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Chen ◽  
Xue-wen Lei ◽  
Han-lin Zhang ◽  
Zhi Lin ◽  
Hui Wang ◽  
...  

AbstractThe problems caused by the interaction between slopes and hydrologic environment in traffic civil engineering are very serious in the granite residual soil area of China, especially in Guangdong Province. Against the background of two heavy rainfall events occurring during a short period due to a typhoon making landfall twice or even two typhoons consecutively making landfall, laboratory model tests were carried out on the hydrological effects of the granite residual soil slope considering three vegetation types under artificial rainfall. The variation in slope surface runoff, soil moisture content and rain seepage over time was recorded during the tests. The results indicate that surface vegetation first effectively reduces the splash erosion impact of rainwater on slopes and then influences the slope hydrological effect through rainwater forms adjustment. (1) The exposed slope has weak resistance to two consecutive heavy rains, the degree of slope scouring and soil erosion damage will increase greatly during the second rainfall. (2) The multiple hindrances of the stem leaf of Zoysia japonica plays a leading role in regulating the hydrological effect of slope, the root system has little effect on the permeability and water storage capacity of slope soil, but improves the erosion resistance of it. (3) Both the stem leaf and root system of Nephrolepis cordifolia have important roles on the hydrological effect. The stem leaf can stabilize the infiltration of rainwater, and successfully inhibit the surface runoff under continuous secondary heavy rainfall. The root system significantly enhances the water storage capacity of the slope, and greatly increases the permeability of the slope soil in the second rainfall, which is totally different from that of the exposed and Zoysia japonica slopes. (4) Zoysia is a suitable vegetation species in terms of slope protection because of its comprehensive slope protection effect. Nephrolepis cordifolia should be cautiously planted as slope protection vegetation. Only on slopes with no stability issues should Nephrolepis cordifolia be considered to preserve soil and water.


2021 ◽  
Author(s):  
Harro Joseph Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Andreas Christen ◽  
Krzysztof Fortuniak ◽  
...  

2021 ◽  
Author(s):  
Harro Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Krzysztof Fortuniak ◽  
Jinkyu Hong ◽  
...  

&lt;p&gt;The amount and dynamics of urban water storage play an important role in mitigating urban flooding and heat. Assessment of the capacity of cities to store water remains challenging due to the extreme heterogeneity of the urban surface. Evapotranspiration (ET) recession after rainfall events during the period without precipitation, over which the amount of stored water gradually decreases, can provide insight on the water storage capacity of urban surfaces. Assuming ET is the only outgoing flux, the water storage capacity can be estimated based on the timescale and intercept of its recession. In this paper, we test the proposed approach to estimate the water storage capacity at neighborhood scale with latent heat flux data collected by eddy covariance flux towers in eleven contrasting urban sites with different local climate zones, vegetation cover and characteristics and background climates (Amsterdam, Arnhem, Basel, Berlin, Helsinki, &amp;#321;&amp;#243;d&amp;#378;, Melbourne, Mexico City, Seoul, Singapore, Vancouver). Water storage capacities ranging between 1 and 12 mm were found. These values correspond to e-folding timescales lasting from 2 to 10 days, which translate to half-lives of 1.5 to 7 days. We find ET at the start of a drydown to be positively related to vegetation fraction, and long timescales and large storage capacities to be associated with higher vegetation fractions. According to our results, urban water storage capacity is at least one order of magnitude smaller than the known water storage capacity in natural forests and grassland.&lt;/p&gt;


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1674
Author(s):  
Anna Ilek ◽  
Małgorzata Szostek ◽  
Anna Mikołajczyk ◽  
Marta Rajtar

During the last decade, tree species mixing has been widely supported as a silvicultural approach to reduce drought stress. However, little is known on the influence of tree species mixing on physical properties and the water storage capacity of forest soils (including the forest floor). Thus, the study aimed to analyze the effect of mixing pine needles and oak leaves and mixing fir needles and beech leaves on hydro-physical properties of the litter layer during laboratory tests. We used fir-beech and pine-oak litter containing various shares of conifer needles (i.e., 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) to determine the influence of the needle admixture on bulk density, total porosity, macroporosity, water storage capacity, the amount of water stored in pores between organic debris and the degree of saturation of mixed litter compared to broadleaf litter (oak or beech). We found that the admixture of fir needles increased the bulk density of litter from 7.9% with a 5% share of needles to 55.5% with a 50% share (compared to pure beech litter), while the share of pine needles < 40% caused a decrease in bulk density by an average of 3.0–11.0% (compared to pure oak litter). Pine needles decreased the water storage capacity of litter by about 13–14% with the share of needles up to 10% and on average by 28% with the 40 and 50% shares of pine needles in the litter layer. Both conifer admixtures reduced the amount of water stored in the pores between organic debris (pine needles more than fir needles).


Sign in / Sign up

Export Citation Format

Share Document