scholarly journals The role of follicular-secreted factors in the maintenance of meiotic arrest in rats

2021 ◽  
Author(s):  
◽  
Zaramasina Lena Clark

<p>Meiosis is the process by which diploid germ cells develop into competent haploid gametes. In female mammals, meiosis is characterised by two periods of arrest, the duration of which is species-specific. This study investigated the first period of meiotic arrest which occurs at the diplotene stage of prophase I. This period of arrest has important implications for artificial reproductive technologies as the maintenance of meiotic arrest in the in vitro situation has been correlated with improved embryological outcomes. Despite there being extensive evidence that the somatic cells of the follicle (granulosa and cumulus cells) produce meiosis-inhibiting factors, the factors themselves and the mechanisms through which they act are unclear. Recent evidence implicates C-type natriuretic peptide (CNP) and oestradiol in the regulation of meiotic arrest in mouse oocytes. In this proposed hypothesis, CNP is produced by the granulosa cells and activates its cognate receptor, NPR2, on cumulus cells. This results in the production of cyclic guanosine monophosphate (cGMP) in cumulus cells which is transferred to the oocyte via gap junctions. In the oocyte, cGMP slows the rate of hydrolysis of cyclic adenosine monophosphate (cAMP) by phosphodiesterase 3A resulting in elevated intra-oocyte cAMP levels. By maintaining high levels of cAMP in the oocyte, maturation-promoting factor (MPF) activity is inhibited, preventing re-entry into the cell cycle, thus maintaining meiotic arrest. The overall objective of this study was to investigate the validity of this aforementioned hypothesised regulatory pathway in another mammalian species, the rat. Four fundamental components of this pathway were chosen to be investigated and these framed the four aims of this study.  The aims of this study were to investigate in cultured rat cumulus cell-oocyte complexes (COCs) the short and long-term effects of CNP and oestradiol, both alone and in combination on (1) gap junction permeability using a validated gap junction assay, (2) intracellular cGMP levels using a direct competitive immunoassay, (3) mRNA expression levels of key cumulus cell-derived genes (Npr2, the receptor for CNP; and Pde4b and Pde4d, phosphodiesterases) using an optimised multiplex TaqMan qPCR reaction, and (4) duration of meiotic arrest.  Overall, the results of this study indicated that the assessed treatments did not alter gap junction permeability in rat COCs in vitro. Whilst treatment with CNP and oestradiol appeared to increase the intracellular levels of cGMP in COCs, this requires further investigation. Notably, this study confirmed the role of steroid hormones in upregulating Npr2 expression. Indirect evidence suggests that PDE4D in particular, is a major regulator of cyclic nucleotide levels in the cumulus cells. Finally, treatment of rat COCs with CNP and oestradiol increased the duration of meiotic arrest in oocytes incubated in vitro.  The results of this study provide the first evidence that the hypothesised regulatory pathway proposed above is also relevant in the rat. Nonetheless, further investigation of the effects of CNP and oestradiol on the modulation of intracellular cGMP levels are required to fully validate the model.</p>

2021 ◽  
Author(s):  
◽  
Zaramasina Lena Clark

<p>Meiosis is the process by which diploid germ cells develop into competent haploid gametes. In female mammals, meiosis is characterised by two periods of arrest, the duration of which is species-specific. This study investigated the first period of meiotic arrest which occurs at the diplotene stage of prophase I. This period of arrest has important implications for artificial reproductive technologies as the maintenance of meiotic arrest in the in vitro situation has been correlated with improved embryological outcomes. Despite there being extensive evidence that the somatic cells of the follicle (granulosa and cumulus cells) produce meiosis-inhibiting factors, the factors themselves and the mechanisms through which they act are unclear. Recent evidence implicates C-type natriuretic peptide (CNP) and oestradiol in the regulation of meiotic arrest in mouse oocytes. In this proposed hypothesis, CNP is produced by the granulosa cells and activates its cognate receptor, NPR2, on cumulus cells. This results in the production of cyclic guanosine monophosphate (cGMP) in cumulus cells which is transferred to the oocyte via gap junctions. In the oocyte, cGMP slows the rate of hydrolysis of cyclic adenosine monophosphate (cAMP) by phosphodiesterase 3A resulting in elevated intra-oocyte cAMP levels. By maintaining high levels of cAMP in the oocyte, maturation-promoting factor (MPF) activity is inhibited, preventing re-entry into the cell cycle, thus maintaining meiotic arrest. The overall objective of this study was to investigate the validity of this aforementioned hypothesised regulatory pathway in another mammalian species, the rat. Four fundamental components of this pathway were chosen to be investigated and these framed the four aims of this study.  The aims of this study were to investigate in cultured rat cumulus cell-oocyte complexes (COCs) the short and long-term effects of CNP and oestradiol, both alone and in combination on (1) gap junction permeability using a validated gap junction assay, (2) intracellular cGMP levels using a direct competitive immunoassay, (3) mRNA expression levels of key cumulus cell-derived genes (Npr2, the receptor for CNP; and Pde4b and Pde4d, phosphodiesterases) using an optimised multiplex TaqMan qPCR reaction, and (4) duration of meiotic arrest.  Overall, the results of this study indicated that the assessed treatments did not alter gap junction permeability in rat COCs in vitro. Whilst treatment with CNP and oestradiol appeared to increase the intracellular levels of cGMP in COCs, this requires further investigation. Notably, this study confirmed the role of steroid hormones in upregulating Npr2 expression. Indirect evidence suggests that PDE4D in particular, is a major regulator of cyclic nucleotide levels in the cumulus cells. Finally, treatment of rat COCs with CNP and oestradiol increased the duration of meiotic arrest in oocytes incubated in vitro.  The results of this study provide the first evidence that the hypothesised regulatory pathway proposed above is also relevant in the rat. Nonetheless, further investigation of the effects of CNP and oestradiol on the modulation of intracellular cGMP levels are required to fully validate the model.</p>


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 725-735
Author(s):  
Julieta Gabriela Hamze ◽  
María Jiménez-Movilla ◽  
Raquel Romar

The role of specific zona pellucida (ZP) glycoproteins in gamete interaction has not yet been elucidated in many species. A recently developed 3D model based on magnetic sepharose beads (B) conjugated to recombinant ZP glycoproteins (BZP) and cumulus cells (CBZP) allows the study of isolated ZP proteins in gamete recognition studies. The objective of this work was to study the role of porcine ZP2, ZP3 and ZP4 proteins in sperm binding, cumulus cell adhesion and acrosome reaction triggering. ZP protein-bound beads were incubated with fresh ejaculated boar spermatozoa and isolated cumulus cells for 24 h. The number of sperm bound to the beads, the acrosomal shrouds (presence of acrosomal content) on the bead’s surface, and the acrosome integrity (by means of PNA-FITC lectin) in bound and unbound sperm were studied. Finally, in vitro matured porcine oocytes mixed with BZP2 were inseminated in vitro using fresh sperm and fertilisation results evaluated. Over 60% of beads had at least one sperm bound after 2 h of coincubation. ZP2-beads (BZP2) and cumulus-ZP2-bead complexes (CBZP2) reached the highest number of sperm per bead, whereas BZP3 and BZP4 models showed the highest number of unbound reacted sperm cells and acrosomal shrouds. Fertilisation efficiency and monospermy rate increased when oocytes were fertilised in the presence of BZP2. We, therefore, conclude that in pigs, it is mainly ZP2 that is involved in sperm-ZP binding whereas ZP3 and ZP4 induce acrosome reaction. Using magnetic sepharose ZP2-bound beads might be a valuable tool to improve the fertilisation rate in pigs.


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


Author(s):  
Aslihan Turhan ◽  
Miguel Tavares Pereira ◽  
Gerhard Schuler ◽  
Ulrich Bleul ◽  
Mariusz P Kowalewski

Abstract Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P &lt; 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P &lt; 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P &lt; 0.05) or PX-478 (P &lt; 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 857-868 ◽  
Author(s):  
Paola Pocar ◽  
Daniela Nestler ◽  
Michaela Risch ◽  
Bernd Fischer

Aroclor-1254 (A-1254) is a commercial mixture of coplanar (dioxin-like) and non-coplanar (non dioxin-like) polychlorinated biphenyls (PCBs) affecting bovine oocytein vitromaturation (IVM) and developmental competence. In the present study, the role of cumulus cell apoptosis in mediating the toxic effects of PCBs duringin vitromaturation has been investigated. Results indicate that exposure of cumulus–oocyte complexes (COCs) to A-1254 significantly induced apoptosis of cumulus cells. Furthermore, A-1254 significantly increased the expression of the pro-apoptotic gene, Bax, concomitantly reducing the level of the anti-apoptotic gene, Bcl-2, in the cumulus cell compartment. The effects of pure mixtures of coplanar (PCB 77, 126 and 169) or non-coplanar (PCB 52, 101 and 153) PCBs were examined. Exposure of COCs to coplanar PCBs affected maturation at doses as low as 100.6 pg/ml. Furthermore, a significant increase in apoptosis and in Bax mRNA expression was observed. No variations in maturation or apoptosis were observed in the non-coplanar PCB group. To further analyze the role of cumulus cells, COCs and denuded oocytes (DOs) have been exposed to A-1254 or coplanar PCBs during IVM. Exposure of COCs significantly reduced the percentage of matured oocytes after 24 h of culture in both treatments. In contrast, exposure of DOs significantly decreased the maturation rate only at the highest dose investigated (100-fold greater than that affecting COCs). Taken together, the results indicate a direct role of cumulus cell apoptosis in mediating PCB toxicity on bovine oocytes, and a direct relationship between congener planarity and toxicity in bovine oocytes is suggested.


2017 ◽  
Vol 114 (29) ◽  
pp. E5796-E5804 ◽  
Author(s):  
Ye Yuan ◽  
Lee D. Spate ◽  
Bethany K. Redel ◽  
Yuchen Tian ◽  
Jie Zhou ◽  
...  

Assisted reproductive technologies in all mammals are critically dependent on the quality of the oocytes used to produce embryos. For reasons not fully clear, oocytes matured in vitro tend to be much less competent to become fertilized, advance to the blastocyst stage, and give rise to live young than their in vivo-produced counterparts, particularly if they are derived from immature females. Here we show that a chemically defined maturation medium supplemented with three cytokines (FGF2, LIF, and IGF1) in combination, so-called “FLI medium,” improves nuclear maturation of oocytes in cumulus–oocyte complexes derived from immature pig ovaries and provides a twofold increase in the efficiency of blastocyst production after in vitro fertilization. Transfer of such blastocysts to recipient females doubles mean litter size to about nine piglets per litter. Maturation of oocytes in FLI medium, therefore, effectively provides a fourfold increase in piglets born per oocyte collected. As they progress in culture, the FLI-matured cumulus–oocyte complexes display distinctly different kinetics of MAPK activation in the cumulus cells, much increased cumulus cell expansion, and an accelerated severance of cytoplasmic projections between the cumulus cells outside the zona pellucida and the oocyte within. These events likely underpin the improvement in oocyte quality achieved by using the FLI medium.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1761 ◽  
Author(s):  
Cheng-Jie Zhou ◽  
Sha-Na Wu ◽  
Jiang-Peng Shen ◽  
Dong-Hui Wang ◽  
Xiang-Wei Kong ◽  
...  

Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affectsin vivoversusin vitromaturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination usingin vivo- orin vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes),in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), andin vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for bothin vivoandin vitrooocyte maturation. In addition, for oocytes maturedin vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes maturedin vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.


Zygote ◽  
2021 ◽  
pp. 1-10
Author(s):  
Eryk Andreas ◽  
Hari Om Pandey ◽  
Michael Hoelker ◽  
Dessie Salilew-Wondim ◽  
Samuel Gebremedhn ◽  
...  

Summary Dynamic changes in microRNAs in oocyte and cumulus cells before and after maturation may explain the spatiotemporal post-transcriptional gene regulation within bovine follicular cells during the oocyte maturation process. miR-20a has been previously shown to regulate proliferation and differentiation as well as progesterone levels in cultured bovine granulosa cells. In the present study, we aimed to demonstrate the function of miR-20a during the bovine oocyte maturation process. Maturation of cumulus–oocyte complexes (COCs) was performed at 39°C in an humidified atmosphere with 5% CO2 in air. The expression of miR-20a was investigated in the cumulus cells and oocytes at 22 h post culture. The functional role of miR-20a was examined by modulating the expression of miR-20a in COCs during in vitro maturation (IVM). We found that the miR-20a expression was increased in cumulus cells but decreased in oocytes after IVM. Overexpression of miR-20a increased the oocyte maturation rate. Even though not statistically significant, miR-20a overexpression during IVM increased progesterone levels in the spent medium. This was further supported by the expression of STAR and CYP11A1 genes in cumulus cells. The phenotypes observed due to overexpression of miR-20a were validated by BMP15 supplementation during IVM and subsequent transfection of BMP15-treated COCs using miR-20a mimic or BMPR2 siRNA. We found that miR-20a mimic or BMPR2 siRNA transfection rescued BMP15-reduced oocyte maturation and progesterone levels. We concluded that miR-20a regulates oocyte maturation by increasing cumulus cell progesterone synthesis by simultaneous suppression of BMPR2 expression.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Sign in / Sign up

Export Citation Format

Share Document