The Design of an IEEE 1588 End-to-End Transparent Ethernet Switch

2021 ◽  
Author(s):  
◽  
Caleb Gordon

<p>In measurement and control systems there is often a need to synchronise distributed clocks. Traditionally, synchronisation has been achieved using a dedicated medium to convey time information, typically using the IRIG-B serial protocol. The precision time protocol (IEEE 1588) has been designed as an improvement to current methods of synchronisation within a distributed network of devices. IEEE 1588 is a message based protocol that can be implemented across packet based networks including, but not limited to, Ethernet. Standard Ethernet switches introduce a variable delay to packets that inhibits path delay measurements. Transparent switches have been introduced to measure and adjust for packet delay, thus removing the negative effects that these variations cause.  This thesis describes the hardware and firmware design of an IEEE 1588 transparent end-to-end Ethernet switch for Tekron International Ltd based in Lower Hutt, New Zealand. This switch has the ability to monitor all Ethernet traffic, identify IEEE 1588 timing packets, measure the delay that these packets experience while passing through the switch, and account for this delay by adjusting a time-interval field of the packet as it is leaving the switch. This process takes place at the operational speed of the port, and without introducing significant delay. Time-interval measurements can be made using a high-precision timestamp unit with a resolution of 1 ns. The total jitter introduced by this measurement process is just 4.5 ns through a single switch.</p>

2021 ◽  
Author(s):  
◽  
Caleb Gordon

<p>In measurement and control systems there is often a need to synchronise distributed clocks. Traditionally, synchronisation has been achieved using a dedicated medium to convey time information, typically using the IRIG-B serial protocol. The precision time protocol (IEEE 1588) has been designed as an improvement to current methods of synchronisation within a distributed network of devices. IEEE 1588 is a message based protocol that can be implemented across packet based networks including, but not limited to, Ethernet. Standard Ethernet switches introduce a variable delay to packets that inhibits path delay measurements. Transparent switches have been introduced to measure and adjust for packet delay, thus removing the negative effects that these variations cause.  This thesis describes the hardware and firmware design of an IEEE 1588 transparent end-to-end Ethernet switch for Tekron International Ltd based in Lower Hutt, New Zealand. This switch has the ability to monitor all Ethernet traffic, identify IEEE 1588 timing packets, measure the delay that these packets experience while passing through the switch, and account for this delay by adjusting a time-interval field of the packet as it is leaving the switch. This process takes place at the operational speed of the port, and without introducing significant delay. Time-interval measurements can be made using a high-precision timestamp unit with a resolution of 1 ns. The total jitter introduced by this measurement process is just 4.5 ns through a single switch.</p>


2008 ◽  
Vol 57 (9) ◽  
pp. 1363-1368 ◽  
Author(s):  
P. Staufer ◽  
J. Pinnekamp

Deposits build up in sewer networks during both spells of dry weather and in connection with storm water events. In order to reduce the negative effects of deposit on the environment, different cleaning technologies and strategies are applied to remove the deposits. Jet cleaning represents the most widely used method to clean sewers. Another alternative cleaning procedure is flushing. On account of new developments in measurement and control panels, the flushing method is becoming more important. Therefore, in the last few years a number of new flushing devices have been constructed for application in basins, main sewers and initial reaches. Today, automatic flushing gates are able to accomplish cleaning procedures under economical and ecological conditions. The properties of flushing waves for cleaning sewers have been determined by several mathematical-numerical studies. These various investigations use altering numerical schemes, are based on different sets of physical equations and take one- or more dimensional aspects into account. Considering that bottom shear stress is the key value to evaluate the beginning of motion of any deposit, one may use this value that has to be determined by measurements. This paper deals with shear stresses caused by flushing waves which have been measured by an ultrasonic device that can determine the velocity in different depths of flow. Thus, it is possible, within certain limits, to calculate bottom shear stresses based on the log-wall law. Further discussion will deal with the requirements of measurements, its uncertainty and aspects in respect to the application of simulation of flushing waves.


Sign in / Sign up

Export Citation Format

Share Document