Targeted BRAF inhibitors: Immunological effects and combination with immunotherapy

2021 ◽  
Author(s):  
◽  
Alanna Cameron

<p>Metastatic melanoma is the most aggressive form of skin cancer, associated with a poor prognosis, and the incidence worldwide is increasing. Recently, selective mutant BRAF inhibitors and checkpoint blockade immunotherapy have advanced clinical treatment of metastatic melanoma. However, efficacy of these therapies individually is limited. Combining treatments may allow BRAF inhibition to augment immunotherapy by increasing tumour antigen availability and improving immune system targeting of tumours. The success of this approach depends upon fully elucidating immunological interactions of BRAF inhibitors, and optimizing combination strategies.  To study the immunological effects of BRAF inhibitors and their combination with immunotherapy, novel murine BrafV600E Pten-/- Cdkn2a cell lines were characterized. These were found to be moderately sensitive to BRAF inhibition compared with the widely used human BRAFV600E cell lines A375 and SK-mel-5. In vitro targeted BRAF inhibition was shown to induce cell death through apoptosis, and partially reverse melanoma-mediated immunosuppression by human melanoma cell lines.   Utilising subcutaneously injected syngeneic, murine BRAFV600E cell lines, the BRAF inhibitor PLX4720 was shown to decrease tumour growth in vivo. Host immune involvement in BRAF inhibitor efficacy was determined by comparing PLX4720 treatment in NOD/Scid and C57BL/6 mice. PLX4720 control of tumour growth was significantly less effective in immunocompromised mice, resulting in reduced survival advantage. These findings demonstrate that the anti-tumour effects of mutant BRAF inhibitors are partially immune dependent, although the nature of this immune involvement remains to be defined. It was further shown that BRAFV600E inhibition directly affected immune responses. In vitro, both human and murine T cell activation were boosted by low concentrations of mutant BRAF inhibitors. This was confirmed in vivo, with antigen-specific T cell proliferation significantly increased by PLX4720 treatment.  The final chapters of this thesis explored the combination of active immunotherapy with targeted BRAF inhibition. A vaccine was devised that consisted of irradiated, autologous tumour cells loaded with the adjuvant α-galactosylceramide. This vaccine was shown to be effective in both prophylactic and therapeutic settings in a BRAFV600E melanoma model. Mechanistically, vaccine increased effector T cell responses and decreased frequencies of Tregs. Vaccine efficacy was CD4⁺ T cell-dependent, and did not require CD8⁺ T cells. Combination of vaccine with targeted BRAF inhibition was investigated in different settings. A combination therapy strategy was developed that achieved additive, but not synergistic benefit. Additionally, targeting specific aspects of the tumour microenvironment that may confer tumour resistance to BRAF inhibitor-mediated cell death was investigated. Both depletion of Tregs and inhibition of TNFα were explored, but did not result in a significant improvement in therapy.   In summary, the studies undertaken in this thesis demonstrate that BRAF inhibitors can augment vaccine-induced T cell responses. Moreover, this research revealed the anti-tumour efficacy of BRAFV600E inhibition is partially immune dependent and can be improved by combination with active immunotherapy. These discoveries generated a combination therapy strategy with improved efficacy over single agent treatment. Further studies are needed to realise the full potential of this combination therapy approach, and achieve a synergistic benefit.</p>

2021 ◽  
Author(s):  
◽  
Alanna Cameron

<p>Metastatic melanoma is the most aggressive form of skin cancer, associated with a poor prognosis, and the incidence worldwide is increasing. Recently, selective mutant BRAF inhibitors and checkpoint blockade immunotherapy have advanced clinical treatment of metastatic melanoma. However, efficacy of these therapies individually is limited. Combining treatments may allow BRAF inhibition to augment immunotherapy by increasing tumour antigen availability and improving immune system targeting of tumours. The success of this approach depends upon fully elucidating immunological interactions of BRAF inhibitors, and optimizing combination strategies.  To study the immunological effects of BRAF inhibitors and their combination with immunotherapy, novel murine BrafV600E Pten-/- Cdkn2a cell lines were characterized. These were found to be moderately sensitive to BRAF inhibition compared with the widely used human BRAFV600E cell lines A375 and SK-mel-5. In vitro targeted BRAF inhibition was shown to induce cell death through apoptosis, and partially reverse melanoma-mediated immunosuppression by human melanoma cell lines.   Utilising subcutaneously injected syngeneic, murine BRAFV600E cell lines, the BRAF inhibitor PLX4720 was shown to decrease tumour growth in vivo. Host immune involvement in BRAF inhibitor efficacy was determined by comparing PLX4720 treatment in NOD/Scid and C57BL/6 mice. PLX4720 control of tumour growth was significantly less effective in immunocompromised mice, resulting in reduced survival advantage. These findings demonstrate that the anti-tumour effects of mutant BRAF inhibitors are partially immune dependent, although the nature of this immune involvement remains to be defined. It was further shown that BRAFV600E inhibition directly affected immune responses. In vitro, both human and murine T cell activation were boosted by low concentrations of mutant BRAF inhibitors. This was confirmed in vivo, with antigen-specific T cell proliferation significantly increased by PLX4720 treatment.  The final chapters of this thesis explored the combination of active immunotherapy with targeted BRAF inhibition. A vaccine was devised that consisted of irradiated, autologous tumour cells loaded with the adjuvant α-galactosylceramide. This vaccine was shown to be effective in both prophylactic and therapeutic settings in a BRAFV600E melanoma model. Mechanistically, vaccine increased effector T cell responses and decreased frequencies of Tregs. Vaccine efficacy was CD4⁺ T cell-dependent, and did not require CD8⁺ T cells. Combination of vaccine with targeted BRAF inhibition was investigated in different settings. A combination therapy strategy was developed that achieved additive, but not synergistic benefit. Additionally, targeting specific aspects of the tumour microenvironment that may confer tumour resistance to BRAF inhibitor-mediated cell death was investigated. Both depletion of Tregs and inhibition of TNFα were explored, but did not result in a significant improvement in therapy.   In summary, the studies undertaken in this thesis demonstrate that BRAF inhibitors can augment vaccine-induced T cell responses. Moreover, this research revealed the anti-tumour efficacy of BRAFV600E inhibition is partially immune dependent and can be improved by combination with active immunotherapy. These discoveries generated a combination therapy strategy with improved efficacy over single agent treatment. Further studies are needed to realise the full potential of this combination therapy approach, and achieve a synergistic benefit.</p>


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yifei Qin ◽  
Qiang Zuo ◽  
Lei Huang ◽  
Liping Huang ◽  
Glenn Merlino ◽  
...  

AbstractTargeting mutant BRAF in patients with melanomas harboring this oncogene has been highly successful as a first-line treatment, but other mutations may affect its efficacy and alter the route of acquired resistance resulting in recurrence and poor prognosis. As an evolving strategy, melanoma treatment needs to be expanded to include targets based on newly discovered emerging molecules and pathways. We here show that PERK plays a critical role in BRAF inhibitor-acquired resistance in melanoma with impaired PTEN. Inhibition of PERK by either shRNA or a pharmacological inhibitor blocked the growth of BRAF inhibitor-resistant melanoma with impaired PTEN in vitro and in vivo, suggesting an effective approach against melanomas with mutant BRAF and PTEN deficiency. Our current findings, along with our previous discovery that the AXL/AKT axis mediates resistance to BRAF inhibition in melanoma with wild-type PTEN, provide new insights toward a strategy for combating BRAF inhibition-acquired resistance in BRAF mutant melanoma with different PTEN statuses.


2020 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 429-435
Author(s):  
E Boven ◽  
T Lindmo ◽  
JB Mitchell ◽  
PA Jr Bunn

The radiolabeled anti-T cell antibody T101 can be used for specific tumor localization, but unlabeled T101 produces limited cytotoxicity in patients. We thus studied the in vitro cytotoxic effects of T101 labeled with 125I, a radionuclide known for its short-range, high- linear-energy electrons. We showed that 125I-T101 could be readily prepared at high specific activity with high immunoreactivity. Human malignant T cell lines HUT 102, MOLT-4, and HUT 78 were found to differ in the number of T65 determinants (the antigen recognized by T101) and the sensitivity to external x-ray radiation, which were of significance for the cytotoxicity of 125I-T101 in vitro. The cytotoxic effects of 125I-T101 were also found to be dose dependent and increased with exposure time under frozen conditions. As controls, unlabeled T101 had no cytotoxic effect, while free Na 125I or the 125I-labeled irrelevant antibody 9.2.27 exerted minor cytotoxicity. In HUT 102 and MOLT-4, more than 3 logs' cell killing was achieved within four weeks. Because considerable cytotoxicity was demonstrated in vitro by 125I-T101 on T65- positive malignant cells, and because low-dose 111In-T101 can be used successfully for tumor localization, future trials using 125I-T101 at high specific radioactivity may improve therapeutic results in patients with T65-positive malignancies.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Javier Martin Broto ◽  
Katia Scotlandi ◽  
Michele Cavo ◽  
...  

BackgroundHigh-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma.MethodsThe human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed.ResultsAlong with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells.ConclusionsTaken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application.


1987 ◽  
Vol 165 (3) ◽  
pp. 641-649 ◽  
Author(s):  
J Van Snick ◽  
A Vink ◽  
S Cayphas ◽  
C Uyttenhove

We have recently described the purification and NH2-terminal amino acid sequence of a T cell-derived hybridoma growth factor that was provisionally designated interleukin-HP1 (IL-HP1). Here we report that a T cell supernatant containing high titers of this hybridoma growth factor considerably facilitated the establishment of primary cultures of murine plasmacytomas. Most plasmacytoma cell lines derived from such cultures remained permanently dependent on IL-HP1-containing T cell supernatant for both survival and growth in vitro. These cell lines, however, retained their ability to form tumors in irradiated pristane-treated mice. Analytical fractionation of a T cell supernatant rich in IL-HP1 by either gel filtration, isoelectric focusing, or reversed-phase HPLC revealed the existence of only one plasmacytoma growth factor activity that strictly copurified with IL-HP1, strongly suggesting the identity of both factors. This conclusion was further supported by the finding that IL-HP1 purified to homogeneity supported the growth of both B cell hybridomas and plasmacytomas. For half-maximal growth, plasmacytomas, however, required a concentration of IL-HP1 of approximately 30 pM, which is approximately 200 times higher than that required by B cell hybridomas. A clear difference in the specificity of IL-HP1 and B cell stimulatory factor 1 (BSF-1) was demonstrated by the finding that IL-HP1-dependent plasmacytomas did not survive in the presence of BSF-1, whereas helper T cell lines that proliferated in the presence of BSF-1 failed to respond to IL-HP1.


Sign in / Sign up

Export Citation Format

Share Document