scholarly journals Phylogeography of the oyster borer (Haustrum scobina)

2021 ◽  
Author(s):  
◽  
Sebastian Logan

<p>An effective investigation of the underlying ecological processes that shape genetic diversity and connectivity typically requires comparisons among phylogeographic studies of multiple species. Phylogeographic studies of New Zealand’s coastal marine benthos have historically relied on post hoc speculation rather than directed research questions to investigate ecological processes. There has also been a lack of studies on direct developing marine molluscs. Direct developers are expected to have a low potential for dispersal and thus show a pattern of genetic isolation by distance across their distributions. Recent research indicates that this assumption may frequently be violated by instances of long distance dispersal/translocation. The oyster borer (Haustrum scobina) is an endemic direct-developing marine mollusc found in high abundances at rocky intertidal environments across the entirety of New Zealand. This distribution and life history makes H. scobina an ideal target to study genetic connectivity in a species expected to show low realised dispersal and high population genetic structuring. This thesis research used 379 new DNA sequences from the mitochondrial gene cytochrome c oxidase subunit 1 (COI) to investigate the phylogeography of H. scobina across the southern North Island. In addition 16 new COI sequences were inadvertently sequenced from the morphologically similar congener Haustrum albomarginatum. Results from both species support the recently proposed division of H. scobina and H. albomarginatum as separate species. H. scobina populations show significant geographic structure and a lack of haplotype diversity across the south-eastern North Island concordant with results of another previous study of a direct developer. This finding suggests that ecological processes may be producing similar population genetic structures for direct developers generally. Contrast between high and low haplotype diversities in northern and southern H. scobina populations respectively, indicates that southern H. scobina populations may have originated via recolonisation from northern populations following a range contraction during the Last Glacial Maximum. Evidence of multiple long distance dispersal/translocation events was found indicating that long distance dispersal via rafting and/or inadvertent human-mediated translocations may have occurred frequently. Results are then discussed with a view to inform further research in to New Zealand direct developers.</p>

2021 ◽  
Author(s):  
◽  
Sebastian Logan

<p>An effective investigation of the underlying ecological processes that shape genetic diversity and connectivity typically requires comparisons among phylogeographic studies of multiple species. Phylogeographic studies of New Zealand’s coastal marine benthos have historically relied on post hoc speculation rather than directed research questions to investigate ecological processes. There has also been a lack of studies on direct developing marine molluscs. Direct developers are expected to have a low potential for dispersal and thus show a pattern of genetic isolation by distance across their distributions. Recent research indicates that this assumption may frequently be violated by instances of long distance dispersal/translocation. The oyster borer (Haustrum scobina) is an endemic direct-developing marine mollusc found in high abundances at rocky intertidal environments across the entirety of New Zealand. This distribution and life history makes H. scobina an ideal target to study genetic connectivity in a species expected to show low realised dispersal and high population genetic structuring. This thesis research used 379 new DNA sequences from the mitochondrial gene cytochrome c oxidase subunit 1 (COI) to investigate the phylogeography of H. scobina across the southern North Island. In addition 16 new COI sequences were inadvertently sequenced from the morphologically similar congener Haustrum albomarginatum. Results from both species support the recently proposed division of H. scobina and H. albomarginatum as separate species. H. scobina populations show significant geographic structure and a lack of haplotype diversity across the south-eastern North Island concordant with results of another previous study of a direct developer. This finding suggests that ecological processes may be producing similar population genetic structures for direct developers generally. Contrast between high and low haplotype diversities in northern and southern H. scobina populations respectively, indicates that southern H. scobina populations may have originated via recolonisation from northern populations following a range contraction during the Last Glacial Maximum. Evidence of multiple long distance dispersal/translocation events was found indicating that long distance dispersal via rafting and/or inadvertent human-mediated translocations may have occurred frequently. Results are then discussed with a view to inform further research in to New Zealand direct developers.</p>


2014 ◽  
Vol 62 (3) ◽  
pp. 238 ◽  
Author(s):  
Z. Y. Zhang ◽  
S. Cashins ◽  
A. Philips ◽  
C. P. Burridge

Conservation of frogs is of global concern, owing to declines resulting from habitat destruction, global climate change, and disease. Knowledge of genetic variation in frog species is therefore desirable for the identification of management units. Here we surveyed mitochondrial DNA sequence variation in the Tasmanian endemic hylid frog Litoria burrowsae, which is infected by chytrid fungus, Batrachochytrium dendrobatidis, and may be declining. Neither phylogeographic structure nor deep phylogenetic divergence was detected in the species, although its populations were highly differentiated with respect to haplotype frequencies. The low-haplotype diversity in L. burrowsae suggests a recent bottleneck in the species, and population genetic structuring may reflect isolation by distance as well as founder effects associated with range expansion. Three putative management units were identified that require verification based on nuclear DNA variation and adaptation to local environments.


2021 ◽  
Author(s):  
◽  
Clare Louise Gebbie

<p>Parapercis colias (blue cod) is an endemic temperate reef fish that supports an important commercial and recreational fishery in New Zealand. However, concerns have been raised about localized stock depletion, and multiple lines of evidence have suggested P. colias may form several biologically distinct populations within the New Zealand Exclusive Economic Zone. Mark and recapture studies along with otolith and stable isotope studies have indicated that individuals are sedentary with very limited movement beyond the scale of 10-20km. The primary goal of this research was to advance the current knowledge of P. colias population genetic structure. This information can be incorporated into stock assessment models with the aim of improving the management of the P. colias fishery. This study made use of 454 pyrosequencing technology to isolate and develop the first set of microsatellite DNA markers for P. colias. These seven microsatellite loci, along with mitochondrial control region sequences, were used to determine the levels of genetic variation and differentiation between sites around the New Zealand coastline, including the Chatham Islands.  Significant differentiation was observed between the Chatham Islands and mainland New Zealand sample sites, indicating that these two regions form distinct populations. Interpretation of the results for the mainland sites was more complex. Mitochondrial sequence data detected no significant pairwise differentiation between mainland sites, although a pattern of isolation-by-distance was observed. However, evidence for genetic differentiation among mainland sites was weak based on the microsatellite DNA analysis. Although pairwise Gѕт levels were significant in some sites, this was not reflected in principal component analysis or Bayesian structure analysis. It is likely that through long range dispersal, migration is at or above the threshold for genetic connectivity, but below a level necessary for demographic connectivity. This is indicated by both the genetic structure reported here, along with previous studies showing limited dispersal of P. colias.</p>


2021 ◽  
Author(s):  
◽  
Melanie Dohner

<p>The exchange of individuals between populations influences demographic connectivity on the ecological scale and genetic connectivity on the evolutionary scale. In some circumstances there are similarities between demographic and genetic connectivity, but in others there are differences. Whenever genetic differentiation is found between populations demographic uncoupling can also be inferred, but when gene flow is found there is uncertainty about whether populations are demographically connected or not. Marine invertebrates typically have large population sizes and many opportunities for dispersal. However, species that have limited planktonic dispersal power are often characterized by genetically and demographically discrete populations that exhibit an isolation-by-distance (IBD) pattern of gene distribution. Alternative methods of dispersal, such as rafting or drifting, produce departures from this expected pattern for species lacking planktonic larvae. Examining genetic patterns at fine geographic scales can identify key dispersal barriers and may give clues to alternative dispersal methods influencing large scale processes.  The endemic, direct-developing spotted whelk, Cominella maculosa, is found in the intertidal rocky shores throughout most of New Zealand. This distribution makes it ideal for studying a species expected to exhibit low realized dispersal by crawling and is unlikely to experience dispersal by rafting. The first aim of this study was to investigate genetic patterns between two genetically distinct populations along the Wairarapa Coast of the North Island to determine if a barrier to dispersal was present or if the expected IBD pattern was observed. The second aim was to determine the likelihood of individual hatchlings undertaking long distance dispersal by drifting in the water column. The mitochondrial DNA COI gene was sequenced using 324 whelk samples collected at seven sites along 125 km of Wairarapa shoreline. No significant level of genetic isolation-by-distance or discontinuity in haplotype distribution was observed. Instead, two sites in the middle of the region form a contact area where the dominant northern and southern haplotypes coexist. To investigate dispersal by drifting in the water, three experimental trials were conducted with hatchlings obtained from field-collected egg capsules. When subjected to wave forces, or deposited directly in flow, hatchlings remained suspended and were carried a short distance. However, hatchlings circulated in currents and left for a longer period (12 hours) were rarely found drifting after this period. These trials indicate that wave dislodgement and local flow regime may result in small-scale displacement of hatchlings, but long-distance dispersal by drift is unlikely. Plankton sampling was also conducted at two sites with four nearshore traps. The rare capture of a related Cominella virgata hatchling supports the finding that hatchlings can be dislodged, but prolonged drift cannot be inferred. The findings from this study support the assumption that crawling is the dominant dispersal mechanism for C. maculosa. Crawling between sites best explains the blending of haplotypes in the middle of the Wairarapa and the genetic differentiation between populations. Crawling-mediated connectivity is unlikely to occur at the ecological scale; therefore populations are expected to be demographically isolated. The results of this research support the general findings in the literature that populations of direct developing species are often demographically isolated and have low levels of genetic connectivity.</p>


2021 ◽  
Author(s):  
◽  
Melanie Dohner

<p>The exchange of individuals between populations influences demographic connectivity on the ecological scale and genetic connectivity on the evolutionary scale. In some circumstances there are similarities between demographic and genetic connectivity, but in others there are differences. Whenever genetic differentiation is found between populations demographic uncoupling can also be inferred, but when gene flow is found there is uncertainty about whether populations are demographically connected or not. Marine invertebrates typically have large population sizes and many opportunities for dispersal. However, species that have limited planktonic dispersal power are often characterized by genetically and demographically discrete populations that exhibit an isolation-by-distance (IBD) pattern of gene distribution. Alternative methods of dispersal, such as rafting or drifting, produce departures from this expected pattern for species lacking planktonic larvae. Examining genetic patterns at fine geographic scales can identify key dispersal barriers and may give clues to alternative dispersal methods influencing large scale processes.  The endemic, direct-developing spotted whelk, Cominella maculosa, is found in the intertidal rocky shores throughout most of New Zealand. This distribution makes it ideal for studying a species expected to exhibit low realized dispersal by crawling and is unlikely to experience dispersal by rafting. The first aim of this study was to investigate genetic patterns between two genetically distinct populations along the Wairarapa Coast of the North Island to determine if a barrier to dispersal was present or if the expected IBD pattern was observed. The second aim was to determine the likelihood of individual hatchlings undertaking long distance dispersal by drifting in the water column. The mitochondrial DNA COI gene was sequenced using 324 whelk samples collected at seven sites along 125 km of Wairarapa shoreline. No significant level of genetic isolation-by-distance or discontinuity in haplotype distribution was observed. Instead, two sites in the middle of the region form a contact area where the dominant northern and southern haplotypes coexist. To investigate dispersal by drifting in the water, three experimental trials were conducted with hatchlings obtained from field-collected egg capsules. When subjected to wave forces, or deposited directly in flow, hatchlings remained suspended and were carried a short distance. However, hatchlings circulated in currents and left for a longer period (12 hours) were rarely found drifting after this period. These trials indicate that wave dislodgement and local flow regime may result in small-scale displacement of hatchlings, but long-distance dispersal by drift is unlikely. Plankton sampling was also conducted at two sites with four nearshore traps. The rare capture of a related Cominella virgata hatchling supports the finding that hatchlings can be dislodged, but prolonged drift cannot be inferred. The findings from this study support the assumption that crawling is the dominant dispersal mechanism for C. maculosa. Crawling between sites best explains the blending of haplotypes in the middle of the Wairarapa and the genetic differentiation between populations. Crawling-mediated connectivity is unlikely to occur at the ecological scale; therefore populations are expected to be demographically isolated. The results of this research support the general findings in the literature that populations of direct developing species are often demographically isolated and have low levels of genetic connectivity.</p>


2013 ◽  
Vol 9 (1) ◽  
pp. 20120821 ◽  
Author(s):  
Raisa Nikula ◽  
Hamish G. Spencer ◽  
Jonathan M. Waters

Dispersal by passive oceanic rafting is considered important for the assembly of biotic communities on islands. However, not much is known about levels of population genetic connectivity maintained by rafting over transoceanic distances. We assess the evolutionary impact of kelp-rafting by estimating population genetic differentiation in three kelp-associated invertebrate species across a system of islands isolated by oceanic gaps for over 5 million years, using mtDNA and AFLP markers. The species occur throughout New Zealand's subantarctic islands, but lack pelagic stages and any opportunity for anthropogenic transportation, and hence must rely on passive rafting for long-distance dispersal. They all have been directly observed to survive transoceanic kelp-rafting journeys in this region. Our analyses indicate that regular gene flow occurs among populations of all three species between all of the islands, especially those on either side of the subtropical front oceanographic boundary. Notwithstanding its perceived sporadic nature, long-distance kelp-rafting appears to enable significant gene flow among island populations separated by hundreds of kilometres of open ocean.


2021 ◽  
Author(s):  
◽  
Clare Louise Gebbie

<p>Parapercis colias (blue cod) is an endemic temperate reef fish that supports an important commercial and recreational fishery in New Zealand. However, concerns have been raised about localized stock depletion, and multiple lines of evidence have suggested P. colias may form several biologically distinct populations within the New Zealand Exclusive Economic Zone. Mark and recapture studies along with otolith and stable isotope studies have indicated that individuals are sedentary with very limited movement beyond the scale of 10-20km. The primary goal of this research was to advance the current knowledge of P. colias population genetic structure. This information can be incorporated into stock assessment models with the aim of improving the management of the P. colias fishery. This study made use of 454 pyrosequencing technology to isolate and develop the first set of microsatellite DNA markers for P. colias. These seven microsatellite loci, along with mitochondrial control region sequences, were used to determine the levels of genetic variation and differentiation between sites around the New Zealand coastline, including the Chatham Islands.  Significant differentiation was observed between the Chatham Islands and mainland New Zealand sample sites, indicating that these two regions form distinct populations. Interpretation of the results for the mainland sites was more complex. Mitochondrial sequence data detected no significant pairwise differentiation between mainland sites, although a pattern of isolation-by-distance was observed. However, evidence for genetic differentiation among mainland sites was weak based on the microsatellite DNA analysis. Although pairwise Gѕт levels were significant in some sites, this was not reflected in principal component analysis or Bayesian structure analysis. It is likely that through long range dispersal, migration is at or above the threshold for genetic connectivity, but below a level necessary for demographic connectivity. This is indicated by both the genetic structure reported here, along with previous studies showing limited dispersal of P. colias.</p>


Author(s):  
E. Punithalingam

Abstract A description is provided for Scirrhia pini[Mycosphaerella pini]. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On pines including Pinus radiata and its hybrids, P. halepensis, P. canariensis, P. carbaea, P. ponderosa, P. nigra and others, Pseudotsuga menziesii (46, 2860), Larix decidua (49, 273). DISEASE: Dothistroma blight; red band. GEOGRAPHICAL DISTRIBUTION: North America (Canada, USA including Alaska), South America (Argentina, Brazil, Chile, Uruguay), Australasia and Oceania (New Zealand), Asia (Brunei, India, Japan), Africa (Ethiopia, Kenya, Malawi, Rhodesia, Swaziland, Tanzania, Uganda), Europe (Austria, France, Rumania, UK, USSR (Republic of Georgia), Yugoslavia) (CMI Map 419, ed. 2, 1970; record in CMI Herbarium). TRANSMISSION: By airborne conidia released and dispersed by a splash take-off mechanism for short distances. Long distance dispersal may be by transport of infected material, such as nursery stock and, under special conditions, clouds may carry sporal inoculum (43, 2100). Survival time of inoculum in the form of cast, infected foliage on the forest floor is limited to 2-6 months under moist conditions (50, 2003).


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 863
Author(s):  
Heidi M. Nistelberger ◽  
Rachel M. Binks ◽  
Stephen van Leeuwen ◽  
David J. Coates ◽  
Shelley L. McArthur ◽  
...  

Phylogeographic studies can be used as a tool to understand the evolutionary history of a landscape, including the major drivers of species distributions and diversity. Extensive research has been conducted on phylogeographic patterns of species found in northern hemisphere landscapes that were affected by glaciations, yet the body of literature for older, unaffected landscapes is still underrepresented. The Pilbara region of north-western Australia is an ancient and vast landscape that is topographically complex, consisting of plateaus, gorges, valleys, and ranges, and experiences extreme meteorological phenomena including seasonal cyclonic activity. These features are expected to influence patterns of genetic structuring throughout the landscape either by promoting or restricting the movement of pollen and seed. Whilst a growing body of literature exists for the fauna endemic to this region, less is known about the forces shaping the evolution of plant taxa. In this study we investigate the phylogeography of two iconic Pilbara tree species, the Hamersley Bloodwood (Corymbia hamersleyana) and Western Gidgee (Acacia pruinocarpa), by assessing patterns of variation and structure in several chloroplast DNA regions and nuclear microsatellite loci developed for each species. Gene flow was found to be extensive in both taxa and there was evidence of long-distance seed dispersal across the region (pollen to seed ratios of 6.67 and 2.96 for C. hamersleyana and A. pruinocarpa, respectively), which may result from flooding and strong wind gusts associated with extreme cyclonic activity. Both species possessed high levels of cpDNA genetic diversity in comparison to those from formerly glaciated landscapes (C. hamersleyana = 14 haplotypes, A. pruinocarpa = 37 haplotypes) and showed evidence of deep lineage diversification occurring from the late Miocene, a time of intensifying aridity in this landscape that appears to be a critical driver of evolution in Pilbara taxa. In contrast to another study, we did not find evidence for topographic features acting as refugia for the widely sampled C. hamersleyana.


2012 ◽  
Vol 44 (2) ◽  
pp. 189-246 ◽  
Author(s):  
Gintaras KANTVILAS

AbstractWith 30 species, Tasmania is a major area of species diversity in the genus Menegazzia. Seven of these are new to science: M. abscondita Kantvilas, known from Tasmania and New Zealand, and M. athrotaxidis Kantvilas, M. hypogymnioides Kantvilas, M. petraea Kantvilas, M. ramulicola Kantvilas, M. subtestacea Kantvilas and M. tarkinea Kantvilas, all endemic to Tasmania. An identification key, descriptions based exclusively on Tasmanian collections, and detailed discussion of distribution, ecology, chemical composition and inter-species relationships are provided. All literature records of Menegazzia species pertaining to Tasmania are accounted for. New synonyms include: Menegazzia prototypica P. James and Parmelia pertusa var. coskinodes F. Wilson [synonyms of M. myriotrema (Müll. Arg.) R. Sant.], M. fertilis P. James [a synonym of M. platytrema (Müll. Arg.) R. Sant.] and Parmelia pertusa var. montana F. Wilson (a synonym of M. subtestacea). Incorrectly recorded species that should be deleted from the Tasmanian census include M. castanea P. James & D. J. Galloway (present on Macquarie Island) and M. testacea P. James & D. J. Galloway (endemic to New Zealand). The South American species, M. sanguinascens (Räs.) R. Sant., is recorded in Australasia (Tasmania) for the first time, whereas the widespread south-eastern Australian M. norstictica P. James is recorded for Western Australia. Salient features of the genus are discussed, including morphology, anatomy and chemistry. The biogeography of the genus is explored briefly. Twelve species (40%) are endemic to Tasmania, a level of endemism unmatched by any other species-rich genus on the island. Twelve species are shared with mainland Australia, eleven are shared with New Zealand, and only four species are shared with southern South America, all of which are sorediate, suggesting they are products of long-distance dispersal.


Sign in / Sign up

Export Citation Format

Share Document