scholarly journals Climate change since the Last Interglacial in northern New Zealand inferred from pollen and chironomid records of the Auckland Maars

2021 ◽  
Author(s):  
◽  
Valerie Van den Bos

<p>In light of contemporary climate change it is more important than ever to understand past shifts in climate, especially past warm phases, and their effects on ecosystems and societies. From compilations of global climate reconstructions, several periods have been identified that might have been warmer than today, the two most recent of which are the Holocene Thermal Maximum (~11 – 5 kyr BP) and the Last Interglacial (~129 – 116 kyr BP). However, spatio-temporal complexities are typically smoothed out in global climate reconstructions and we do not have a good understanding of the regional differences in past climate. The southern mid-latitudes especially are underrepresented in palaeoclimate research.  For this thesis I analyse the sediments from two maars within the Auckland Volcanic Field: Orakei Basin, which erupted ~126.0 kyr BP and accumulated sediments until ~9 – 8.5 kyr BP; and Lake Pupuke, which still contains a lake today and therefore covers the Holocene. Quantitative climate reconstructions are necessary to put the Orakei Basin and Lake Pupuke records in a broad context and to enable comparisons of past and future climates. For this study I focus on biological proxies preserved by lake sediments, namely pollen, which primarily responds to mean annual air temperatures (MAAT), and chironomids, a surrogate for summer air temperatures (SmT). Together, MAAT and SmT reconstructions from the same site can provide insight into changing seasonality over time, an underexplored dimension of proxy-based reconstructions. The chironomid record covers just the last ~14 cal kyr BP however, because of low head capsule abundances in older sediment sections.  The Orakei Basin pollen record and associated MAAT reconstruction cover ~85 to 9 cal kyr BP and show five distinct phases comparable to Marine Isotope Stages (MIS) 5 to 1. This association is confirmed by the preliminary tephrochronology of the core. The broad similarity of the Orakei MAAT trend to the MIS and other records from New Zealand implies all were driven by northern high-latitude summer insolation, consistent with the Milankovitch orbital forcing hypothesis. Several patterns superimposed on the general trend stand out: first, MIS 4 is a brief cool period, which is inconsistent with the observation that glacier advances equivalent to those of the late last glacial maximum occurred ~65 kyr BP in the Southern Alps, possibly due to the seasonal distribution of energy from solar insolation. Second, MIS 3 displays an earlier warm phase followed by a progressive cooling trend which might be correlated to decreasing local summer insolation intensity. Third, glacial conditions of MIS 2 appear consistent with the early onset of the last glacial maximum in the southern mid latitudes, which was likely driven by regional insolation intensity.  The Lake Pupuke pollen and chironomid records, covering the last ~14 cal kyr BP, show no evidence of a past warm period equivalent to the Holocene Thermal Maximum. MAAT is stable throughout the Holocene, whereas SmT increases between 10 and 3 cal kyr BP. The latter shows a strong relationship with integrated local summer insolation. The temperature reconstructions lead to the conclusion, first, that seasonality was low during the Early Holocene (12 to 9.3 cal kyr BP), and second, that during mid-to-late Holocene (after ~7 cal kyr BP) summers were hot and dry, allowing the tall conifer kauri to expand throughout northern New Zealand.  The Lake Pupuke chironomid-SmT reconstruction highlighted an issue with the transfer function model, namely, that it was not able to reconstruct values close to modern day (18.9°C). Therefore, I explore an extended training set which encompasses a longer temperature gradient. New models are fitted using both traditional techniques and modern machine learning methods. The new model improves the SmT reconstruction from Lake Pupuke, in the sense that reconstructed temperatures now reach modern day values. However, the SmT trend is the same as the original trend, substantiating the previously drawn conclusions.  During the course of this research, I discovered that density separation during pollen preparation can lead to varying relative abundances, depending on the specific gravity used. After some experimentation I found that using a low specific gravity (2.0; recommended value in the literature) can result in the overrepresentation of buoyant pollen grains, leading to erroneous interpretations.  Together, these results point out the importance of considering regional-to-local drivers of climate changes superimposed on global reconstructions. Multi-proxy records can help disentangle the different aspects of the climate system, where especially chironomids can be helpful to elucidate the role of SmT and local summer insolation. Finally, this thesis shows the importance of questioning the appropriateness of conventional methodologies and where possible, addressing their limitations.</p>

2021 ◽  
Author(s):  
◽  
Valerie Van den Bos

<p>In light of contemporary climate change it is more important than ever to understand past shifts in climate, especially past warm phases, and their effects on ecosystems and societies. From compilations of global climate reconstructions, several periods have been identified that might have been warmer than today, the two most recent of which are the Holocene Thermal Maximum (~11 – 5 kyr BP) and the Last Interglacial (~129 – 116 kyr BP). However, spatio-temporal complexities are typically smoothed out in global climate reconstructions and we do not have a good understanding of the regional differences in past climate. The southern mid-latitudes especially are underrepresented in palaeoclimate research.  For this thesis I analyse the sediments from two maars within the Auckland Volcanic Field: Orakei Basin, which erupted ~126.0 kyr BP and accumulated sediments until ~9 – 8.5 kyr BP; and Lake Pupuke, which still contains a lake today and therefore covers the Holocene. Quantitative climate reconstructions are necessary to put the Orakei Basin and Lake Pupuke records in a broad context and to enable comparisons of past and future climates. For this study I focus on biological proxies preserved by lake sediments, namely pollen, which primarily responds to mean annual air temperatures (MAAT), and chironomids, a surrogate for summer air temperatures (SmT). Together, MAAT and SmT reconstructions from the same site can provide insight into changing seasonality over time, an underexplored dimension of proxy-based reconstructions. The chironomid record covers just the last ~14 cal kyr BP however, because of low head capsule abundances in older sediment sections.  The Orakei Basin pollen record and associated MAAT reconstruction cover ~85 to 9 cal kyr BP and show five distinct phases comparable to Marine Isotope Stages (MIS) 5 to 1. This association is confirmed by the preliminary tephrochronology of the core. The broad similarity of the Orakei MAAT trend to the MIS and other records from New Zealand implies all were driven by northern high-latitude summer insolation, consistent with the Milankovitch orbital forcing hypothesis. Several patterns superimposed on the general trend stand out: first, MIS 4 is a brief cool period, which is inconsistent with the observation that glacier advances equivalent to those of the late last glacial maximum occurred ~65 kyr BP in the Southern Alps, possibly due to the seasonal distribution of energy from solar insolation. Second, MIS 3 displays an earlier warm phase followed by a progressive cooling trend which might be correlated to decreasing local summer insolation intensity. Third, glacial conditions of MIS 2 appear consistent with the early onset of the last glacial maximum in the southern mid latitudes, which was likely driven by regional insolation intensity.  The Lake Pupuke pollen and chironomid records, covering the last ~14 cal kyr BP, show no evidence of a past warm period equivalent to the Holocene Thermal Maximum. MAAT is stable throughout the Holocene, whereas SmT increases between 10 and 3 cal kyr BP. The latter shows a strong relationship with integrated local summer insolation. The temperature reconstructions lead to the conclusion, first, that seasonality was low during the Early Holocene (12 to 9.3 cal kyr BP), and second, that during mid-to-late Holocene (after ~7 cal kyr BP) summers were hot and dry, allowing the tall conifer kauri to expand throughout northern New Zealand.  The Lake Pupuke chironomid-SmT reconstruction highlighted an issue with the transfer function model, namely, that it was not able to reconstruct values close to modern day (18.9°C). Therefore, I explore an extended training set which encompasses a longer temperature gradient. New models are fitted using both traditional techniques and modern machine learning methods. The new model improves the SmT reconstruction from Lake Pupuke, in the sense that reconstructed temperatures now reach modern day values. However, the SmT trend is the same as the original trend, substantiating the previously drawn conclusions.  During the course of this research, I discovered that density separation during pollen preparation can lead to varying relative abundances, depending on the specific gravity used. After some experimentation I found that using a low specific gravity (2.0; recommended value in the literature) can result in the overrepresentation of buoyant pollen grains, leading to erroneous interpretations.  Together, these results point out the importance of considering regional-to-local drivers of climate changes superimposed on global reconstructions. Multi-proxy records can help disentangle the different aspects of the climate system, where especially chironomids can be helpful to elucidate the role of SmT and local summer insolation. Finally, this thesis shows the importance of questioning the appropriateness of conventional methodologies and where possible, addressing their limitations.</p>


2021 ◽  
Author(s):  
Per J.E. Sjögren

An overview of climate reconstructions considering summer air temperatures and effective precipitation is provided for northernmost Fennoscandia. During the earliest part of the Holocene (11,700–10,000 cal. BP), temperatures rose rapidly and were followed by mild, wet and variable conditions. An early major warming peaked around 9500 cal. BP, although many records indicate that the main Holocene warming first occurred about c. 8000 cal. BP. The sub-regional pattern of climate change suggests a defining influence of the westerlies and the North Cape Current. Non-analog climatic conditions and lags in vegetation responses to climate change may explain some of the discrepancies seen in the early Holocene between proxies. In contrast to the perceivable variable onset of the main Holocene warm period, maximum temperatures are relatively consistent between the records, indicating temperatures 1.5±0.5°C above present. Precipitation was generally high from 10,000 cal. BP but decreased towards 8000 cal. BP when dry climatic conditions became predominant. After a stable period 8000–6000 cal. BP a gradual cooling was initiated, with a more abrupt period of change 4500–3800 cal. BP when the warm and dry climate of the mid-Holocene changed into the cool, wet and unstable climate of the late Holocene. Modern conditions were reached c. 2800 cal. BP. The Holocene Thermal Maximum may be defined several different ways: as temperatures distinctly above modern delimited to 9500–4000 cal. BP; as peak temperatures 9500–6000 cal. BP; and/or as climax vegetation in the period 8000–4000 cal. BP. Prior to 8000 cal. BP vegetation probably lagged behind the warming, whereas in the period 8000–4000 cal. BP an equilibrium between climate and vegetation was established.


2013 ◽  
Vol 9 (4) ◽  
pp. 1629-1643 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


2021 ◽  
Author(s):  
Philipp Marr ◽  
Stefan Winkler ◽  
Svein Olaf Dahl ◽  
Jörg Löffler

&lt;p&gt;Periglacial, paraglacial and related boulder-dominated landforms constitute a valuable, but often unexplored source of palaeoclimatic and morphodynamic information. The timing of landform formation and stabilization can be linked to past cold climatic conditions which offers the possibility to reconstruct cold climatic periods. In this study, Schmidt-hammer exposure-age dating (SHD) was applied to a variety of boulder-dominated landforms (sorted stripes, blockfield, paraglacial alluvial fan, rock-slope failure) in Rondane, eastern South Norway for the first time. On the basis of an old and young control point a local calibration curve was established from which surface exposure ages of each landform were calculated. The investigation of formation, stabilization and age of the respective landforms permitted an assessment of Holocene climate variability in Rondane and its connectivity to landform evolution. The obtained SHD age estimates range from 11.15 &amp;#177; 1.22 to 3.99 &amp;#177; 1.52 ka which shows their general inactive and relict character. Most surface exposure ages of the sorted stripes cluster between 9.62 &amp;#177; 1.36 and 9.01 &amp;#177; 1.21 ka and appear to have stabilized towards the end of the &amp;#8216;Erdalen Event&amp;#8217; or in the following warm period prior to &amp;#8216;Finse Event&amp;#8217;. The blockfield age with 8.40 &amp;#177; 1.16 ka indicates landform stabilization during &amp;#8216;Finse Event&amp;#8217;, around the onset of the Holocene Thermal Maximum (~8.0&amp;#8211;5.0 ka). The paraglacial alluvial fan with its four subsites shows age ranges from 8.51 &amp;#177; 1.63 to 3.99 &amp;#177; 1.52 ka. The old exposure age points to fan aggradation follow regional deglaciation due to paraglacial processes, whereas the younger ages can be explained by increasing precipitation during the onset neoglaciation at ~4.0 ka. Surface exposure age of the rock-slope failure with 7.39 &amp;#177; 0.74 ka falls into a transitional climate period towards the Holocene Thermal Maximum (~8.0&amp;#8211;5.0 ka). This indicates that climate-driven factors such as decreasing permafrost depth and/or increasing hydrological pressure negatively influence slope stability. Our obtained first surface exposure ages from boulder-dominated landforms in Rondane give important insights to better understand the palaeoclimatic variability in the Holocene.&lt;/p&gt;


2016 ◽  
Vol 13 (22) ◽  
pp. 6305-6319 ◽  
Author(s):  
Sirui Wang ◽  
Qianlai Zhuang ◽  
Zicheng Yu

Abstract. Northern high latitudes contain large amounts of soil organic carbon (SOC), of which Alaskan terrestrial ecosystems account for a substantial proportion. In this study, the SOC accumulation in Alaskan terrestrial ecosystems over the last 15 000 years was simulated using a process-based biogeochemistry model for both peatland and non-peatland ecosystems. Comparable with the previous estimates of 25–70 Pg C in peatland and 13–22 Pg C in non-peatland soils within 1 m depth in Alaska using peat-core data, our model estimated a total SOC of 36–63 Pg C at present, including 27–48 Pg C in peatland soils and 9–15 Pg C in non-peatland soils. Current vegetation stored 2.5–3.7 Pg C in Alaska, with 0.3–0.6 Pg C in peatlands and 2.2–3.1 Pg C in non-peatlands. The simulated average rate of peat C accumulation was 2.3 Tg C yr−1, with a peak value of 5.1 Tg C yr−1 during the Holocene Thermal Maximum (HTM) in the early Holocene, 4-fold higher than the average rate of 1.4 Tg C yr−1 over the rest of the Holocene. The SOC accumulation slowed down, or even ceased, during the neoglacial climate cooling after the mid-Holocene, but increased again in the 20th century. The model-estimated peat depths ranged from 1.1 to 2.7 m, similar to the field-based estimate of 2.29 m for the region. We found that the changes in vegetation and their distributions were the main factors in determining the spatial variations of SOC accumulation during different time periods. Warmer summer temperature and stronger radiation seasonality, along with higher precipitation in the HTM and the 20th century, might have resulted in the extensive peatland expansion and carbon accumulation.


2019 ◽  
Vol 5 (12) ◽  
pp. eaax8203 ◽  
Author(s):  
Hyo-Seok Park ◽  
Seong-Joong Kim ◽  
Andrew L. Stewart ◽  
Seok-Woo Son ◽  
Kyong-Hwan Seo

The Holocene thermal maximum was characterized by strong summer solar heating that substantially increased the summertime temperature relative to preindustrial climate. However, the summer warming was compensated by weaker winter insolation, and the annual mean temperature of the Holocene thermal maximum remains ambiguous. Using multimodel mid-Holocene simulations, we show that the annual mean Northern Hemisphere temperature is strongly correlated with the degree of Arctic amplification and sea ice loss. Additional model experiments show that the summer Arctic sea ice loss persists into winter and increases the mid- and high-latitude temperatures. These results are evaluated against four proxy datasets to verify that the annual mean northern high-latitude temperature during the mid-Holocene was warmer than the preindustrial climate, because of the seasonally rectified temperature increase driven by the Arctic amplification. This study offers a resolution to the “Holocene temperature conundrum”, a well-known discrepancy between paleo-proxies and climate model simulations of Holocene thermal maximum.


2012 ◽  
Vol 8 (5) ◽  
pp. 5263-5291 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene Thermal Maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveal a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from a previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in a ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that the modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


Sign in / Sign up

Export Citation Format

Share Document