scholarly journals Energy flexible commercial buildings and the electricity grid

2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>

2021 ◽  
Author(s):  
◽  
Sandi Sirikhanchai

<p>New Zealand’s energy and electricity system is likely to undergo serious changes with climate change and the decarbonisation of the grid playing a significant role. Research in New Zealand around flexibly managing the electricity grid using buildings has focused on thermoelectric appliances in the residential sector while there has been limited research and quantification of the energy flexibility offered by commercial buildings. Despite this, managing the grid using energy flexible commercial buildings represents an opportunity to achieve meaningful reductions in electricity demand from buildings that are far less numerous than residential buildings.  The aim of this thesis was to establish whether energy flexible commercial buildings in New Zealand can maintain the current quality of indoor thermal comfort and achieve reductions in demand that are sufficiently large that grid operators consider them significant contributors to grid management. By understanding the contribution, we can understand whether energy flexible commercial buildings are worth further investigation. In this thesis, energy flexibility means the ability for a building to manage its demand and generation according to user needs, grid needs, and local climate conditions. Energy flexibility in commercial buildings could then support the integration of more variable renewable energy sources and increase demand response capability which is a cost-effective way to manage network constraints and reduce non-renewable  electricity generation.   Case studies of New Zealand commercial buildings represented as Building Energy Models (BEMs) were simulated under energy flexible operation in a building performance simulation software (EnergyPlus). The selected case studies were small commercial buildings less than 1,499m² in size and which all contained heat pumps. The buildings were of office, retail, and mixed-use types. Two simple energy flexibility strategies were simulated in the buildings and the results from each building were then aggregated and extrapolated across the New Zealand commercial building stock. The strategies simply shifted and shed heating electricity demand. This was done to test whether implementing basic energy flexibility strategies have the potential to reduce electricity demand by a meaningful magnitude.   At best the commercial building stock’s peak demand could reduce by 177MW by energy flexibly operating 45% of the commercial building stock, this was equivalent to around 11,700 buildings. In this scenario heating was shifted to start 150 minutes earlier in the morning. The study concluded that there is energy flexibility potential in New Zealand commercial buildings that results in demand reductions sufficiently large enough for grid operators to consider significant for grid management. This could be achieved without seriously jeopardising the current quality of indoor thermal comfort and warrants further investigation into energy flexible commercial buildings. This thesis also presented a refined methodology and energy modelling practice that could be used by other researchers to model and evaluate energy flexible buildings without the need to recreate the same methodology.</p>


2021 ◽  
Author(s):  
◽  
Shaan Cory

This thesis explores the feasibility of converting the current New Zealand commercial building stock to Net Zero Energy (NZE). The analysis presented is grounded in real building performance and construction information. The goal was to establish results that are as realistic as possible to actual building performance. The Net Zero Energy Building (Net ZEB) concept is one of many low energy building movements that respond to the issues of climate change and energy security. The Net ZEB concept strives to reduce demand for energy and then to offset any residual energy consumption with non-CO2 emitting renewable energy technologies. The (re-)design focus for Net ZEBs is to reduce annual energy consumption to be equal to or less than any generated renewable energy. This is an important concept since approximately 40 percent of all energy and emissions worldwide are building related. If all buildings were designed and operated to be NZE, the existing energy can be used by other sectors which will increase energy security. Conversely, reducing the fossil fuel CO2 producing component of the energy consumed by buildings has the benefit of negating building’s contribution to climate change. The Net ZEB concept assumes each building is grid-connected, and balances the energy taken from the grid against the energy put back into the grid over a year. This study exploits the available synergies of the grid connection to achieve NZE for the whole building stock. Thus each individual building does not need to be NZE at the site, but they act as a community to reach NZE collectively. Furthermore, any grid-tied renewable energy does not need to be offset, only the non-renewable portion. A NZE target was calculated to determine the percentage reduction in current energy consumption needed before the current commercial building stock could be considered NZE. It was found that a 45 percent reduction in primary energy would offset all non-renewable CO2 emitting energy supply currently consumed by the New Zealand commercial building stock. Previous studies assessing whether converting an entire stock of commercial buildings to NZE is possible used prototypical building energy models. Prototypical models represent a hypothetical average building and have many assumptions about the way a building is operated. This thesis develops a method that takes a representative sample of real commercial buildings and makes calibrated energy models that can be aggregated to represent energy consumption for all commercial buildings in New Zealand. The developed calibration method makes use of as-built building information and a standardised procedure for identifying the inaccurate model inputs which need to be corrected for a building energy model to be calibrated. To further base the process in reality, a set of Energy Conservation Measures (ECM) that had been implemented in real Net ZEBs worldwide was adopted for the proposed retrofits. These ECMs were combined into Net ZEB solution sets for retrofitting the aggregated commercial building models. Optimisation of the Net ZEB solution sets was performed on hundreds of models to maximise energy savings. It took over six months for all of the optimisations to be completed. This thesis demonstrates the estimated New Zealand commercial building stock’s energy consumption based upon the calibrated energy models was robust by comparing it to an external estimate. It shows that NZE can be achieved by applying well understood Net ZEB solution sets to the New Zealand commercial building stock. 96 percent of the NZE goal is attainable just through demand reduction without the use of onsite renewable energy generation. The additional four percent of reduction required to meet NZE is easily attainable with onsite renewable generation. Another benefit is that the retrofitted commercial buildings will provide improved thermal comfort for the occupants. Having established NZE was possible, this thesis concludes with an analysis of the broader implications of achieving the NZE goal. It identifies the next step would be to design a NZE commercial building stock that reduces the stresses on the existing energy infrastructure. The Solution Set adopted was not developed with the interaction of the building and electrical grid in mind. To have a practical implementation of NZE will require costing and community prioritisation. This would be the next phase of work assessing nationwide NZE retrofit.


2021 ◽  
Author(s):  
◽  
Shaan Cory

This thesis explores the feasibility of converting the current New Zealand commercial building stock to Net Zero Energy (NZE). The analysis presented is grounded in real building performance and construction information. The goal was to establish results that are as realistic as possible to actual building performance. The Net Zero Energy Building (Net ZEB) concept is one of many low energy building movements that respond to the issues of climate change and energy security. The Net ZEB concept strives to reduce demand for energy and then to offset any residual energy consumption with non-CO2 emitting renewable energy technologies. The (re-)design focus for Net ZEBs is to reduce annual energy consumption to be equal to or less than any generated renewable energy. This is an important concept since approximately 40 percent of all energy and emissions worldwide are building related. If all buildings were designed and operated to be NZE, the existing energy can be used by other sectors which will increase energy security. Conversely, reducing the fossil fuel CO2 producing component of the energy consumed by buildings has the benefit of negating building’s contribution to climate change. The Net ZEB concept assumes each building is grid-connected, and balances the energy taken from the grid against the energy put back into the grid over a year. This study exploits the available synergies of the grid connection to achieve NZE for the whole building stock. Thus each individual building does not need to be NZE at the site, but they act as a community to reach NZE collectively. Furthermore, any grid-tied renewable energy does not need to be offset, only the non-renewable portion. A NZE target was calculated to determine the percentage reduction in current energy consumption needed before the current commercial building stock could be considered NZE. It was found that a 45 percent reduction in primary energy would offset all non-renewable CO2 emitting energy supply currently consumed by the New Zealand commercial building stock. Previous studies assessing whether converting an entire stock of commercial buildings to NZE is possible used prototypical building energy models. Prototypical models represent a hypothetical average building and have many assumptions about the way a building is operated. This thesis develops a method that takes a representative sample of real commercial buildings and makes calibrated energy models that can be aggregated to represent energy consumption for all commercial buildings in New Zealand. The developed calibration method makes use of as-built building information and a standardised procedure for identifying the inaccurate model inputs which need to be corrected for a building energy model to be calibrated. To further base the process in reality, a set of Energy Conservation Measures (ECM) that had been implemented in real Net ZEBs worldwide was adopted for the proposed retrofits. These ECMs were combined into Net ZEB solution sets for retrofitting the aggregated commercial building models. Optimisation of the Net ZEB solution sets was performed on hundreds of models to maximise energy savings. It took over six months for all of the optimisations to be completed. This thesis demonstrates the estimated New Zealand commercial building stock’s energy consumption based upon the calibrated energy models was robust by comparing it to an external estimate. It shows that NZE can be achieved by applying well understood Net ZEB solution sets to the New Zealand commercial building stock. 96 percent of the NZE goal is attainable just through demand reduction without the use of onsite renewable energy generation. The additional four percent of reduction required to meet NZE is easily attainable with onsite renewable generation. Another benefit is that the retrofitted commercial buildings will provide improved thermal comfort for the occupants. Having established NZE was possible, this thesis concludes with an analysis of the broader implications of achieving the NZE goal. It identifies the next step would be to design a NZE commercial building stock that reduces the stresses on the existing energy infrastructure. The Solution Set adopted was not developed with the interaction of the building and electrical grid in mind. To have a practical implementation of NZE will require costing and community prioritisation. This would be the next phase of work assessing nationwide NZE retrofit.


2021 ◽  
Author(s):  
◽  
Peony Pui Yue Au

<p>The objective of this research was to determine the adequacy of Android devices capturing High Dynamic Range (HDR) photography, and using it as a tool for daylight analysis in New Zealand’s commercial building stock. This study was conducted with an Android Smartphone and later an Android Tablet, employing the use of a US$50 magnetic fisheye lens. The overall aim of this research was to evaluate whether an inexpensive programmable data acquisition system could provide meaningful and useful luminance data.  To complete this research, the adequacy of computer simulation using HDR photography of the real horizontal and vertical skies was explored. Using the method documented in this research, the luminance distribution of the building interiors could then be mapped accurately in daylight simulations.  The BRANZ Building Energy End-Use Study (BEES) team currently have one internal lighting measurement point, which records light levels in each of more than 100 commercial buildings randomly selected to be representative of commercial buildings in New Zealand. The HOBO U12 data logger typically records the environmental data on a desktop within the main area of the monitored premises. The HOBO data loggers only provide the environmental measurement of that specific location and do not provide the researcher the daylight distribution of the whole space. Using the data collected by BEES, a thesis was developed to explore the utility of HDR imaging as a supplement to the use of a single internal light measurement in the analysis of daylight potential in New Zealand’s commercial building stock.  Three buildings were randomly selected from the BEES targeted strata five database to be monitored over a one day period. Within each building, at least three rooms were studied, all facing different orientations. The pilot study and the first two buildings monitored employed the use of a Motorola Defy Smartphone to capture the low dynamic range (LDR) photographs of each scene using both the HDR Camera application available from the Android Google Play Application Store, and the built-in camera application that came with the Smartphone. The vertical (by pressing the Smartphone hard up against the window) and horizontal (from the ground) skies were also captured simultaneously as only one device was available at each monitored building and to ensure consistency in each building. These photographs were fused using an HDR software called Photosphere, into a single HDR image.  However, before the HDR images could be generated to contain accurate luminance data within the images, a camera response curve is required to be generated. A camera response curve is unique to each device and only needs to be generated once and can be generated using Photosphere. Unfortunately, a camera response curve could not be generated for the Motorola Defy Smartphone and through various experimentations and tests in both the lighting laboratory and in-field, it was discovered that this had nothing to do with the EXIF data contained within the photographs captured as originally thought, but the JPEG image format itself. This resulted in a generic camera response curve, from Photosphere, being used for the pilot study and the first two monitored buildings. For the final building that was monitored, a Galaxy Note Tablet was used. A camera response curve for this device could be easily generated using Photosphere.  The pilot study and three monitored buildings were geometrically simulated using Google SketchUp 8 and were then exported in to Radiance Lighting Simulation and Rendering System using the su2rad plug-in. The files were then edited in Ecotect™ Radiance Control Panel, after which the real and simulated images were compared using HDRShop and RadDisplay.   The four comparison methods were used to compare the real and simulated data were pixel to pixel comparison; section to section pixel comparison; surface to surface comparison and visual field comparison. Of the four methods used the first two were visual based comparisons, whereas the latter two were numerical, which employ the use of a calculation method to calculate the relative error percentages. The biggest problem that arose from the visual comparisons was the geometrical misalignment due to the use of a fisheye lens and only provided the luminance difference ranging from a scale of 0 cd/m2 to 50 cd/m2. The numerical comparison methods provided a 60% correlation between real and simulated data.  It was concluded that, depending on the Android device used, HDR photographs are able to provide reliable images that contain accurate luminance data when a camera response curve for the device could be generated.</p>


2021 ◽  
Author(s):  
◽  
Peony Pui Yue Au

<p>The objective of this research was to determine the adequacy of Android devices capturing High Dynamic Range (HDR) photography, and using it as a tool for daylight analysis in New Zealand’s commercial building stock. This study was conducted with an Android Smartphone and later an Android Tablet, employing the use of a US$50 magnetic fisheye lens. The overall aim of this research was to evaluate whether an inexpensive programmable data acquisition system could provide meaningful and useful luminance data.  To complete this research, the adequacy of computer simulation using HDR photography of the real horizontal and vertical skies was explored. Using the method documented in this research, the luminance distribution of the building interiors could then be mapped accurately in daylight simulations.  The BRANZ Building Energy End-Use Study (BEES) team currently have one internal lighting measurement point, which records light levels in each of more than 100 commercial buildings randomly selected to be representative of commercial buildings in New Zealand. The HOBO U12 data logger typically records the environmental data on a desktop within the main area of the monitored premises. The HOBO data loggers only provide the environmental measurement of that specific location and do not provide the researcher the daylight distribution of the whole space. Using the data collected by BEES, a thesis was developed to explore the utility of HDR imaging as a supplement to the use of a single internal light measurement in the analysis of daylight potential in New Zealand’s commercial building stock.  Three buildings were randomly selected from the BEES targeted strata five database to be monitored over a one day period. Within each building, at least three rooms were studied, all facing different orientations. The pilot study and the first two buildings monitored employed the use of a Motorola Defy Smartphone to capture the low dynamic range (LDR) photographs of each scene using both the HDR Camera application available from the Android Google Play Application Store, and the built-in camera application that came with the Smartphone. The vertical (by pressing the Smartphone hard up against the window) and horizontal (from the ground) skies were also captured simultaneously as only one device was available at each monitored building and to ensure consistency in each building. These photographs were fused using an HDR software called Photosphere, into a single HDR image.  However, before the HDR images could be generated to contain accurate luminance data within the images, a camera response curve is required to be generated. A camera response curve is unique to each device and only needs to be generated once and can be generated using Photosphere. Unfortunately, a camera response curve could not be generated for the Motorola Defy Smartphone and through various experimentations and tests in both the lighting laboratory and in-field, it was discovered that this had nothing to do with the EXIF data contained within the photographs captured as originally thought, but the JPEG image format itself. This resulted in a generic camera response curve, from Photosphere, being used for the pilot study and the first two monitored buildings. For the final building that was monitored, a Galaxy Note Tablet was used. A camera response curve for this device could be easily generated using Photosphere.  The pilot study and three monitored buildings were geometrically simulated using Google SketchUp 8 and were then exported in to Radiance Lighting Simulation and Rendering System using the su2rad plug-in. The files were then edited in Ecotect™ Radiance Control Panel, after which the real and simulated images were compared using HDRShop and RadDisplay.   The four comparison methods were used to compare the real and simulated data were pixel to pixel comparison; section to section pixel comparison; surface to surface comparison and visual field comparison. Of the four methods used the first two were visual based comparisons, whereas the latter two were numerical, which employ the use of a calculation method to calculate the relative error percentages. The biggest problem that arose from the visual comparisons was the geometrical misalignment due to the use of a fisheye lens and only provided the luminance difference ranging from a scale of 0 cd/m2 to 50 cd/m2. The numerical comparison methods provided a 60% correlation between real and simulated data.  It was concluded that, depending on the Android device used, HDR photographs are able to provide reliable images that contain accurate luminance data when a camera response curve for the device could be generated.</p>


2021 ◽  
Author(s):  
◽  
Alex Josephine Hills

<p>This thesis proposes a reinvention of the means of presenting statistical data about 3D urban environments. Conventional GIS use of 3D ’enhances’ hard to understand 2D maps with even harder-to-understand histograms of data. The goal is to demonstrate the means by which data on energy and water-use in buildings can be used to enhance familiar 3D interactive city environments and be made accessible to the widest possible audience. Ultimately, resource benchmarks and other related publicly available information about the built environment could be presented in this highly accessible form. All information would be database driven, so automatically updateable. From this basic platform, applications that allow people to compare their own private records with public norms are easily constructed: a world where a building owner can compare their energy records with benchmarks for similar buildings and take action to improve if necessary, or to advertise accomplishments.  This study draws on data from the ‘BEES’ Building Energy End-use Study - a BRANZ research project documenting energy and water use in New Zealand commercial buildings. During the study a ‘Websearch’ survey was conducted, building a detailed picture of non-residential building stock in New Zealand with data collected on building typologies, characteristics and surroundings. A thorough research methodology was developed to ensure that high level data could be collected from 3,000 randomly selected buildings within the budget allocated for the project. The data was examined for quality, building characteristics and typology mix and a valuable layer of detail was added by inferring additional information from the basic Websearch dataset. Where sub-samples used in the BEES study were subject to refusal / survey participation rates, the level of potential bias in the mix of building typologies could be tested and allowances made. Energy and water use data collected for a random subset of the sample, could then be applied as benchmarks to the census of New Zealand commercial buildings.  In order to trial the communication of the benchmark results to the widest possible audience, an automated 3D city visualisation ‘pilot’ was generated of the Wellington Central Business District and a number of graphic tools were brought together to make the information publicly accessible and as useful as possible. The overall aim was to test the feasibility of applying this technique at a national level.  The research revealed three major recommendations: firstly, a national unique building identifier is required to ensure the accuracy of national building data and enable statistical results about the built environment to be accurately and reliably applied to real buildings; secondly, resource use data in 3D format is urgently required to improve the value of sustainable properties; lastly, creating a significant impact on building stock efficiency will depend upon the engagement of a wider audience. Developed further, this visualisation will enable construction professionals, building owners, developers and tenants to understand the built environment and implications of building design and typology on energy and water use.</p>


2021 ◽  
Author(s):  
◽  
Alex Josephine Hills

<p>This thesis proposes a reinvention of the means of presenting statistical data about 3D urban environments. Conventional GIS use of 3D ’enhances’ hard to understand 2D maps with even harder-to-understand histograms of data. The goal is to demonstrate the means by which data on energy and water-use in buildings can be used to enhance familiar 3D interactive city environments and be made accessible to the widest possible audience. Ultimately, resource benchmarks and other related publicly available information about the built environment could be presented in this highly accessible form. All information would be database driven, so automatically updateable. From this basic platform, applications that allow people to compare their own private records with public norms are easily constructed: a world where a building owner can compare their energy records with benchmarks for similar buildings and take action to improve if necessary, or to advertise accomplishments.  This study draws on data from the ‘BEES’ Building Energy End-use Study - a BRANZ research project documenting energy and water use in New Zealand commercial buildings. During the study a ‘Websearch’ survey was conducted, building a detailed picture of non-residential building stock in New Zealand with data collected on building typologies, characteristics and surroundings. A thorough research methodology was developed to ensure that high level data could be collected from 3,000 randomly selected buildings within the budget allocated for the project. The data was examined for quality, building characteristics and typology mix and a valuable layer of detail was added by inferring additional information from the basic Websearch dataset. Where sub-samples used in the BEES study were subject to refusal / survey participation rates, the level of potential bias in the mix of building typologies could be tested and allowances made. Energy and water use data collected for a random subset of the sample, could then be applied as benchmarks to the census of New Zealand commercial buildings.  In order to trial the communication of the benchmark results to the widest possible audience, an automated 3D city visualisation ‘pilot’ was generated of the Wellington Central Business District and a number of graphic tools were brought together to make the information publicly accessible and as useful as possible. The overall aim was to test the feasibility of applying this technique at a national level.  The research revealed three major recommendations: firstly, a national unique building identifier is required to ensure the accuracy of national building data and enable statistical results about the built environment to be accurately and reliably applied to real buildings; secondly, resource use data in 3D format is urgently required to improve the value of sustainable properties; lastly, creating a significant impact on building stock efficiency will depend upon the engagement of a wider audience. Developed further, this visualisation will enable construction professionals, building owners, developers and tenants to understand the built environment and implications of building design and typology on energy and water use.</p>


2020 ◽  
Vol 22 (4) ◽  
pp. 1-6
Author(s):  
Aiwny Cássia Jorge Antonino ◽  
Anelise Andrade De Souza ◽  
Marco Antônio Andrade De Souza

Objective To monitor the frequency of enteroparasites in lettuce (Lactuca sativa) and parsley (Petrosolium sativum) samples, marketed in commercial buildings in the municipality of Jaguaré, Espírito Santo, Brazil.Materials and Methods Between August 2016 and July 2017, five different popular commercial buildings (markets, supermarkets and fairs) in the municipality of Jaguaré, considered the main local vegetable suppliers were selected. Throughout the research, 30 vegetable samples were randomly selected for parasitological analysis in 3 replicates for each commercial building under study. The obtained samples were analyzed by the modified spontaneous sedimentation method at the Laboratory of Parasitology and Hematology of Universidade Federal do Espírito Santo.Results Of the 30 samples analyzed, 83.3% were positive for parasitic contamination and the most common parasites were Hookworm, Balantidium coli, Isospora belli, Ascaris sp. and Entamoeba sp.Conclusions The results indicate a high degree of contamination of the vegetables, probably related to the precariousness of production, transportation and handling, making it necessary to adopt measures that ensure the best quality of food and, consequently, better population health.


2020 ◽  
Author(s):  
Hiran Thabrew ◽  
Karolina Stasiak ◽  
Harshali Kumar ◽  
Tarique Naseem ◽  
Christopher Frampton ◽  
...  

BACKGROUND Approximately 10% to 12% of New Zealand children and young people have long-term physical conditions (also known as chronic illnesses) and are more likely to develop psychological problems, particularly anxiety and depression. Delayed treatment leads to worse physical and mental healthcare, school absence, and poorer long-term outcomes. Recently, electronic health (eHealth) interventions, especially those based on the principles of Cognitive Behavior Therapy (CBT), have been shown to be as good as face-to-face therapy. Biofeedback techniques have also been shown to enhance relaxation during the treatment of anxiety. However, these modalities have rarely been combined. Young people with long-term physical conditions have expressed a preference for well-designed and technologically-based support to deal with psychological issues, especially anxiety. OBJECTIVE This study aimed to co-design and evaluate the (i) acceptability and (ii) usability of a CBT and biofeedback-based, 5-module eHealth game called ‘Starship Rescue’ and (iii) to provide preliminary evidence regarding its effectiveness in addressing anxiety and quality of life in young people with long-term physical conditions. METHODS Starship Rescue was co-designed with children and young people from a tertiary hospital in Auckland, New Zealand. Following this, 24 young people aged 10 to 17 years were enrolled in an open trial, during which they were asked to use the game for an 8-week period. Acceptability of the game to all participants was assessed using a brief, open-ended questionnaire, and more detailed feedback was obtained from a subset of 10 participants via semi-structured interviews. Usability was evaluated via the System Usability Scale (SUS) and device-recorded frequency and duration of access on completion of the game. Anxiety levels were measured prior to commencement, on completion of the game, and 3 months later using the Generalized Anxiety Disorder 7-item scale (GAD-7) and Spence Child Anxiety Scales (SCAS), and at the start of each module and at the end of the game using an embedded Likert/visual analog scale. Quality of life was measured prior to commencement and on completion of the game using the Pediatric Quality of Life Scale (PEDS-QL). RESULTS Users gave Starship Rescue an overall rating of 5.9 out of 10 (range 3-10 and a mean score of 71 out of 100 (SD 11.7; min 47.5; max 90) on the System Usability Scale (SUS). The mean time period for use of the game was just over 11-weeks (78.8 days, 13.5 hours, 40 minutes). Significant reductions in anxiety were noted between the start and end of the game on the GAD-7 (-4.6 (p=0.000)), SCAS (-9.6 (p=0.005)), and the Likert/visual analogue scales (-2.4 (p=0.001)). Quality of life also improved on the PedsQL scale (+4.3 (p=0.042)). All changes were sustained at 3-month follow-up. CONCLUSIONS This study provides preliminary evidence for Starship Rescue being an acceptable, usable and effective eHealth intervention for addressing anxiety in young people with long-term physical conditions. Further evaluation is planned via a more formal randomized controlled trial. CLINICALTRIAL Australian New Zealand Clinical Trials Network Registry (ANZCTR): ACTRN12616001253493p;https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=371443 (Archived by WebCite at http://www.webcitation.org/6sYB716lf)


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


Sign in / Sign up

Export Citation Format

Share Document