Designing the Armadillo Orthosis: User experience design for a wearable upper limb stroke therapy device.

2021 ◽  
Author(s):  
◽  
Jessica Saul

<p>Stroke is a medical condition causing disability worldwide (Feigin et al., 2014; Murray et al., 2012; National Heart Lung and Blood institute, 2016). It can leave people with physical and cognitive deficits. The individual’s function in everyday activities following a stroke depends on the severity of the stroke and the amount of therapy available to them. Rehabilitation for the physical impairments, such as upper limb deficits, can promote recovery and is delivered by physiotherapists and occupational therapists. Therapy takes place predominantly in the clinical environment. It is manual, task based, delivered one on one, and can be time intensive. Self-management methods for patients’ stroke rehabilitation are gaining attention from healthcare professionals (Taylor, Monsanto, Kilgour, Smith, & Hale, 2019). Rehabilitation that can be done at home has benefits for the individual, the family or caregiver, the therapist and the healthcare system. Independent rehabilitation at home reduces pressure on healthcare resources and can be beneficial for stroke patients recovery. So, medical interventions and products are shifting from clinical to community and home environments.   The use of robotics for rehabilitation has the potential to support recovery of function and assist with everyday tasks in a variety of ways. This paper explores the design of a robotic device for the hand. By involving stroke patients, clinicians and carers in the design process, this research aims to improve the user experiences of a robotic device for hand rehabilitation. Designing for the user experience has the potential to improve the engagement and acceptance of the robotic device for independent home therapy.   A combination of methods have been used to include users in the design process and gather qualitative data to inform the design. The methodologies include research through design and human-centred design. Research through design includes methods such as a literature review, using and adapting design criteria, prototyping, iteration, user-testing, and thematic analysis. Human-centred design is about involving users in the development process and include methods such as surveys, semi-structured interviews, observations, and user testing. There were four clinicians and seven stroke patients that met inclusion criteria and participated in the testing. Three patients and three clinician participants were involved in the interviews. Personas were used to understand user wants and needs, and to inform criteria for the design process.  By using these methods we gain a better understanding of the users’ needs in order to improve the design of the pre-existing robotic upper limb stroke rehabilitation device. The purpose of the design is to meet the needs of the stroke patient in his or her own home. This design study focuses on developing the user experience by addressing usability. Interactions considered during the iterative design process are putting on and taking off the device. It is found through testing and iterations that comfort, cleaning and safety were necessary for this wearable robotic upper limb stroke therapy device to be easily worn and used in the home.</p>

2021 ◽  
Author(s):  
◽  
Jessica Saul

<p>Stroke is a medical condition causing disability worldwide (Feigin et al., 2014; Murray et al., 2012; National Heart Lung and Blood institute, 2016). It can leave people with physical and cognitive deficits. The individual’s function in everyday activities following a stroke depends on the severity of the stroke and the amount of therapy available to them. Rehabilitation for the physical impairments, such as upper limb deficits, can promote recovery and is delivered by physiotherapists and occupational therapists. Therapy takes place predominantly in the clinical environment. It is manual, task based, delivered one on one, and can be time intensive. Self-management methods for patients’ stroke rehabilitation are gaining attention from healthcare professionals (Taylor, Monsanto, Kilgour, Smith, & Hale, 2019). Rehabilitation that can be done at home has benefits for the individual, the family or caregiver, the therapist and the healthcare system. Independent rehabilitation at home reduces pressure on healthcare resources and can be beneficial for stroke patients recovery. So, medical interventions and products are shifting from clinical to community and home environments.   The use of robotics for rehabilitation has the potential to support recovery of function and assist with everyday tasks in a variety of ways. This paper explores the design of a robotic device for the hand. By involving stroke patients, clinicians and carers in the design process, this research aims to improve the user experiences of a robotic device for hand rehabilitation. Designing for the user experience has the potential to improve the engagement and acceptance of the robotic device for independent home therapy.   A combination of methods have been used to include users in the design process and gather qualitative data to inform the design. The methodologies include research through design and human-centred design. Research through design includes methods such as a literature review, using and adapting design criteria, prototyping, iteration, user-testing, and thematic analysis. Human-centred design is about involving users in the development process and include methods such as surveys, semi-structured interviews, observations, and user testing. There were four clinicians and seven stroke patients that met inclusion criteria and participated in the testing. Three patients and three clinician participants were involved in the interviews. Personas were used to understand user wants and needs, and to inform criteria for the design process.  By using these methods we gain a better understanding of the users’ needs in order to improve the design of the pre-existing robotic upper limb stroke rehabilitation device. The purpose of the design is to meet the needs of the stroke patient in his or her own home. This design study focuses on developing the user experience by addressing usability. Interactions considered during the iterative design process are putting on and taking off the device. It is found through testing and iterations that comfort, cleaning and safety were necessary for this wearable robotic upper limb stroke therapy device to be easily worn and used in the home.</p>


2019 ◽  
Vol 33 (2) ◽  
pp. 112-129 ◽  
Author(s):  
Martina Maier ◽  
Belén Rubio Ballester ◽  
Armin Duff ◽  
Esther Duarte Oller ◽  
Paul F. M. J. Verschure

Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming. Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT). Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures. Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Maram AlMousa ◽  
Hend S. Al-Khalifa ◽  
Hana AlSobayel

Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of nonimmersive virtual reality- (VR-) based rehabilitation systems, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the elicited requirements of a fully immersive VR-based rehabilitation system that will be designed for domestic upper limb stroke patients; we will also provide an initial conceptual prototype of the proposed system.


2021 ◽  
Author(s):  
◽  
William Duncan

<p>Successful stroke rehabilitation relies on early, long-term, repetitive and intensive treatment. Repetitions conducted during clinical rehabilitation are significantly lower than that suggested by physiotherapeutic literature to relearn lost motor capabilities. This leaves patients to achieve this quantity in their home environment. Exercises can be monotonous and repetitive, making it difficult to maintain patient motivation. Exergames have been promoted for use in the home to make rehabilitation entertaining, increasing patients engagement with their therapy. Marketed exergaming systems for lower limb rehabilitation are hard to find, and none as of yet, facilitate Strength for Task Training (STT), a novel physiotherapeutic method for lower limb stroke rehabilitation. Strength for Task Training involves performing brief but intensive strength training (priming) prior to task-specic training to promote neural plasticity and maximise the gains in locomotor ability.  This research investigates how the design of a game controller for lower limb stroke rehabilitation can facilitate unsupervised STT to compliment clinical contact time.  The game controller was developed as part of a complete exergaming system designed to specifically facilitate STT. This involved working closely with co-researcher Scott Brebner who designed the exergame media. A user centered design approach was followed to include clinicians and stroke patients in the design process. This ensured the design aligned with the functional requirements of STT and the contextual needs of the patient. Workshops with stroke clinicians and neurophysiologists pointed to the specific areas of STT that a designed system could address. An iterative design process was used to develop, compare and improve concepts through testing with participants and clinicians. User testing involved participants using the game controller to interact with the digital game.  The final output was a prototype pair of smart shoes with an attachable weighted sole. The design used removable sensors to translate lower limb movement into ingame interactions. The design of the shoes and weighted sole provided a simple and safe way to engage in unsupervised STT. Research findings suggest that while not all of the STT therapy can be incorporated in an unsupervised and home-based exergame system, there are some essential elements that can. Adaptable hardware was found to be integral to facilitating intensive priming. Barriers to use can be reduced through considering the diverse physiological and cognitive abilities of stroke patients and aesthetic consideration can help create a meaningful game controller that promotes its use in the home.</p>


2021 ◽  
Vol 15 ◽  
Author(s):  
Jessica Cantillo-Negrete ◽  
Ruben I. Carino-Escobar ◽  
Paul Carrillo-Mora ◽  
Marlene A. Rodriguez-Barragan ◽  
Claudia Hernandez-Arenas ◽  
...  

Brain-Computer Interfaces (BCI) coupled to robotic assistive devices have shown promise for the rehabilitation of stroke patients. However, little has been reported that compares the clinical and physiological effects of a BCI intervention for upper limb stroke rehabilitation with those of conventional therapy. This study assesses the feasibility of an intervention with a BCI based on electroencephalography (EEG) coupled to a robotic hand orthosis for upper limb stroke rehabilitation and compares its outcomes to conventional therapy. Seven subacute and three chronic stroke patients (M = 59.9 ± 12.8) with severe upper limb impairment were recruited in a crossover feasibility study to receive 1 month of BCI therapy and 1 month of conventional therapy in random order. The outcome measures were comprised of: Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), motor evoked potentials elicited by transcranial magnetic stimulation (TMS), hand dynamometry, and EEG. Additionally, BCI performance and user experience were measured. All measurements were acquired before and after each intervention. FMA-UE and ARAT after BCI (23.1 ± 16; 8.4 ± 10) and after conventional therapy (21.9 ± 15; 8.7 ± 11) were significantly higher (p &lt; 0.017) compared to baseline (17.5 ± 15; 4.3 ± 6) but were similar between therapies (p &gt; 0.017). Via TMS, corticospinal tract integrity could be assessed in the affected hemisphere of three patients at baseline, in five after BCI, and four after conventional therapy. While no significant difference (p &gt; 0.05) was found in patients’ affected hand strength, it was higher after the BCI therapy. EEG cortical activations were significantly higher over motor and non-motor regions after both therapies (p &lt; 0.017). System performance increased across BCI sessions, from 54 (50, 70%) to 72% (56, 83%). Patients reported moderate mental workloads and excellent usability with the BCI. Outcome measurements implied that a BCI intervention using a robotic hand orthosis as feedback has the potential to elicit neuroplasticity-related mechanisms, similar to those observed during conventional therapy, even in a group of severely impaired stroke patients. Therefore, the proposed BCI system could be a suitable therapy option and will be further assessed in clinical trials.


2017 ◽  
Vol 49 (7) ◽  
pp. 565-571 ◽  
Author(s):  
S Dehem ◽  
M Gilliaux ◽  
T Lejeune ◽  
C Detrembleur ◽  
D Galinski ◽  
...  

Robotica ◽  
2003 ◽  
Vol 21 (1) ◽  
pp. 13-23 ◽  
Author(s):  
M. J. Johnson ◽  
H. F. M. Van der Loos ◽  
C. G. Burgar ◽  
P. Shor ◽  
L. J. Leifer

Hemiplegia, affecting approximately 75% of all stroke survivors, is a common neurological impairment that results in upper and lower limb sensory and motor deficits. Recovery of coordinated movement of both upper limbs is important for bilateral function and promotes personal independence. This paper describes the philosophy and design of Driver's Simulation Environment for Arm Therapy, a one-degree-of-freedom robotic device that uses a modified Constraint-Induced therapy paradigm to promote coordinated bilateral movement in the upper limbs. Baseline force and tracking data for four neurologically unimpaired subjects who completed bilateral and unilateral steering with the impaired arm using the device are presented.


Sign in / Sign up

Export Citation Format

Share Document