scholarly journals Extending process and understanding for the development of complex ecosystem models, with application to the Chatham Rise Atlantis model

2021 ◽  
Author(s):  
◽  
Vidette McGregor

<p>The Chatham Rise is a highly productive deep-sea ecosystem that supports numerous substantial commercial fisheries, and is therefore a likely candidate for an ecosystem based approach to fisheries management in New Zealand. This thesis describes model construction, calibration and validation, for the first end-to-end ecosystem model of the Chatham Rise, New Zealand. The work extends beyond what has previously been done for validating such models, and explores uncertainty analyses through bootstrapping the oceanographic variables, perturbing the model's initial conditions, and analysing species interaction effects, with the results further analysed with respect to known data gaps. This enables the inclusion of uncertainty in simulated scenarios using the Chatham Rise Atlantis model, thus providing an envelope of results with which to analyse and understand the likely responses of the Chatham Rise ecosystem. The model was designed with 24 dynamic polygons, 5 water column depth bins, 55 species functional groups, and used 12-hour timesteps. The transfer of energy was tracked throughout the system using nitrogen as the model's main currency. The model simulated the system from 1900–2015, preceded by a 35 year burn-in period. The model produced very similar biomass trajectories in response to historical fishing to corresponding fisheries stock assessment models for key fisheries species. Population dynamics and system interactions were considered realistic with respect to growth rates, mortality rates, diets and species group interactions. The model was found to be generally stable under perturbations to the initial conditions, with lower trophic level species groups having the most variability. The specification of the Spawning Stock Recruitment curve was explored, as it relates to the multi-species and ecosystem models within which it is now applied. Close attention needs to be given to population dynamics specific to multi-species interactions such as predation-release, in particular the Spawning Stock Recruitment curve. Potentially misleading dynamics under predation-release were identified, and the simple solution of applying a cap to recruitment when biomass exceeds virgin levels was explored. The population dynamics of myctophids under fishing induced predation release were analysed with and without limiting recruitment to virgin levels. The effects were evident in several ecosystem indicators, suggesting unintentional mis-specification could lead to erroneous model results. It raises several questions around the specification of the Spawning Stock Recruitment relationship for multispecies models, and more generally, whether the concept of ‘virgin’ (or ‘unfished’) biomass should be reconsidered to reflect dynamic natural mortality and potentially changing unfished states. The model components that had knowledge gaps and were found to most likely to influence model results were the initial conditions, oceanographic variables, and the aggregate species groups ‘seabird’ and ‘cetacean other’. It is recommended that applications of the model, such as forecasting biomasses under various fishing regimes, should include alternatives that vary these components, and present appropriate levels of uncertainty in results. Initial conditions should be perturbed, with greater variability applied to species groups modelled as biomass-pools, and age-structured species groups that have little data available from the literature.</p>

2021 ◽  
Author(s):  
◽  
Vidette McGregor

<p>The Chatham Rise is a highly productive deep-sea ecosystem that supports numerous substantial commercial fisheries, and is therefore a likely candidate for an ecosystem based approach to fisheries management in New Zealand. This thesis describes model construction, calibration and validation, for the first end-to-end ecosystem model of the Chatham Rise, New Zealand. The work extends beyond what has previously been done for validating such models, and explores uncertainty analyses through bootstrapping the oceanographic variables, perturbing the model's initial conditions, and analysing species interaction effects, with the results further analysed with respect to known data gaps. This enables the inclusion of uncertainty in simulated scenarios using the Chatham Rise Atlantis model, thus providing an envelope of results with which to analyse and understand the likely responses of the Chatham Rise ecosystem. The model was designed with 24 dynamic polygons, 5 water column depth bins, 55 species functional groups, and used 12-hour timesteps. The transfer of energy was tracked throughout the system using nitrogen as the model's main currency. The model simulated the system from 1900–2015, preceded by a 35 year burn-in period. The model produced very similar biomass trajectories in response to historical fishing to corresponding fisheries stock assessment models for key fisheries species. Population dynamics and system interactions were considered realistic with respect to growth rates, mortality rates, diets and species group interactions. The model was found to be generally stable under perturbations to the initial conditions, with lower trophic level species groups having the most variability. The specification of the Spawning Stock Recruitment curve was explored, as it relates to the multi-species and ecosystem models within which it is now applied. Close attention needs to be given to population dynamics specific to multi-species interactions such as predation-release, in particular the Spawning Stock Recruitment curve. Potentially misleading dynamics under predation-release were identified, and the simple solution of applying a cap to recruitment when biomass exceeds virgin levels was explored. The population dynamics of myctophids under fishing induced predation release were analysed with and without limiting recruitment to virgin levels. The effects were evident in several ecosystem indicators, suggesting unintentional mis-specification could lead to erroneous model results. It raises several questions around the specification of the Spawning Stock Recruitment relationship for multispecies models, and more generally, whether the concept of ‘virgin’ (or ‘unfished’) biomass should be reconsidered to reflect dynamic natural mortality and potentially changing unfished states. The model components that had knowledge gaps and were found to most likely to influence model results were the initial conditions, oceanographic variables, and the aggregate species groups ‘seabird’ and ‘cetacean other’. It is recommended that applications of the model, such as forecasting biomasses under various fishing regimes, should include alternatives that vary these components, and present appropriate levels of uncertainty in results. Initial conditions should be perturbed, with greater variability applied to species groups modelled as biomass-pools, and age-structured species groups that have little data available from the literature.</p>


1985 ◽  
Vol 42 (11) ◽  
pp. 1833-1834 ◽  
Author(s):  
Ray Hilborn

The optimum spawning stock size for a Ricker stock recruitment curve was shown to be accurately approximated by the equation Ps = Pr(0.5–0.07a) when 0 < a < 3. A simple modification was also shown to incorporate stochastic variation about the stock recruitment curve into calculations of optimum stock size.


1986 ◽  
Vol 43 (11) ◽  
pp. 2353-2359 ◽  
Author(s):  
R. C. A. Bannister ◽  
J. T. Addison

Stock assessment of the European lobster (Homarus gammarus) has involved yield per recruit analysis based on the established length cohort methodology of Jones (1974. ICES C.M. 1974/F:33; 1981. FAO Fish. Circ. 734) which assumes that recruitment to the fishery is independent of spawning stock. The Shepherd (1982. J. Cons. Int. Explor. Mer 40: 67–75) model has been used to simulate a range of assumed stock–recruitment relationships, and the resulting sensitivity analysis describes how these affect the relation between yield or biomass and four management variables, namely fishing mortality, minimum carapace length, maximum carapace length, and the capture or noncapture of egg-bearing females. Yield curves show a clear maximum with a marked tendency to stock collapse when fishing effort is high. For the range of simulations considered, the probability of an early recruit failure is greatest for asymptotic stock–recruitment curves, which generate yield curves with maxima at an effort substantially lower than the present level. Only with a highly overcompensatory stock–recruitment curve is there a case for increasing effort to maximise yield, but such a relationship tends to reduce the benefit of increasing minimum carapace length or of setting a maximum carapace length. The model predicts that the assumption made about the stock–recruitment relationship also has a marked effect on the results expected from a ban on the landing of egg-bearing females. Overall the results confirm the unsatisfactory prognosis of the yield per recruit model and emphasise the need to gain an understanding of the biological factors determining the shape of the lobster stock–recruitment curve.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9254
Author(s):  
Vidette L. McGregor ◽  
Elizabeth A. Fulton ◽  
Matthew R. Dunn

Ecosystem models require the specification of initial conditions, and these initial conditions have some level of uncertainty. It is important to allow for uncertainty when presenting model results, because it reduces the risk of errant or non-representative results. It is crucial that model results are presented as an envelope of what is likely, rather than presenting only one instance. We perturbed the initial conditions of the Chatham Rise Atlantis model and analysed the effect of this uncertainty on the model’s dynamics by comparing the model outputs resulting from many initial condition perturbations. At the species group level, we found some species groups were more sensitive than others, with lower trophic level species groups generally more sensitive to perturbations of the initial conditions. We recommend testing for robust system dynamics by assessing the consistency of ecosystem indicators in response to fishing pressure under perturbed initial conditions. In any set of scenarios explored using complex end-to-end ecosystem models, we recommend that associated uncertainty analysis be included with perturbations of the initial conditions.


1997 ◽  
Vol 54 (6) ◽  
pp. 1414-1421 ◽  
Author(s):  
Paul AH Medley ◽  
Christopher H Ninnes

Using only catch numbers and effort data, we developed a recruitment index that exploits underlying seasonal changes in lobster size frequencies in the Turks and Caicos Islands' spiny lobster (Panulirus argus) fishery. The recruitment index was successfully used to model the lobster population dynamics. An empirical bootstrap method to simulate observation errors suggests that the models are robust enough to form the basis of a management plan. A tentative stock-recruitment relationship between estimates of the spawning stock and recruitment has been identified that can be used to guide escapement levels from the fishery. If correct, the stock-recruitment relationship indicates that the lobster population is largely self-recruiting.


1995 ◽  
Vol 2 (1) ◽  
pp. 39 ◽  
Author(s):  
Doug P. Armstong ◽  
Ian G. McLean

One of the most common tools in New Zealand conservation is to translocate species to new locations. There have now been over 400 translocations done for conservation reasons, mainly involving terrestrial birds. Most translocations have been done strictly as management exercises, with little or no reference to theory. Nevertheless, translocations always involve some underlying theory, given that people must inevitably choose among a range of potential translocation strategies. We review theory relevant to translocations in the following areas: habitat requirements, susceptibility to predation, behavioural adaptation, population dynamics, genetics, metapopulation dynamics, and community ecology. For each area we review and evaluate the models that seem to underpin translocation strategies used in New Zealand. We report experiments testing some of these models, but note that theory underlying translocation strategies is largely untested despite a long history of translocations. We conclude by suggesting key areas for research, both theoretical and empirical. We particularly recommend that translocations be designed as experimental tests of hypotheses whenever possible.


2020 ◽  
Author(s):  
Diana E. Bowler ◽  
Mikkel A. J. Kvasnes ◽  
Hans C. Pedersen ◽  
Brett K. Sandercock ◽  
Erlend B. Nilsen

AbstractAccording to classic theory, species’ population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator-prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that rodent dynamics had stronger effects on ptarmigan in colder regions. Our study highlights how species interactions play an important role for the population dynamics of species at higher latitudes and suggests that they can become even more important in the most climatically harsh regions.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243794
Author(s):  
Sam McKechnie ◽  
David Fletcher ◽  
Jamie Newman ◽  
Corey Bragg ◽  
Peter W. Dillingham ◽  
...  

A suite of factors may have contributed to declines in the tītī (sooty shearwater; Ardenna grisea) population in the New Zealand region since at least the 1960s. Recent estimation of the magnitude of most sources of non-natural mortality has presented the opportunity to quantitatively assess the relative importance of these factors. We fit a range of population dynamics models to a time-series of relative abundance data from 1976 until 2005, with the various sources of mortality being modelled at the appropriate part of the life-cycle. We present estimates of effects obtained from the best-fitting model and using model averaging. The best-fitting models explained much of the variation in the abundance index when survival and fecundity were linked to the Southern Oscillation Index, with strong decreases in adult survival, juvenile survival and fecundity being related to El Niño-Southern Oscillation (ENSO) events. Predation by introduced animals, harvesting by humans, and bycatch in fisheries also appear to have contributed to the population decline. It is envisioned that the best-fitting models will form the basis for quantitative assessments of competing management strategies. Our analysis suggests that sustainability of the New Zealand tītī population will be most influenced by climate, in particular by how climate change will affect the frequency and intensity of ENSO events in the future. Removal of the effects of both depredation by introduced predators and harvesting by humans is likely to have fewer benefits for the population than alleviating climate effects.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112846 ◽  
Author(s):  
Karlette A. Fernandes ◽  
Sandra Kittelmann ◽  
Christopher W. Rogers ◽  
Erica K. Gee ◽  
Charlotte F. Bolwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document