scholarly journals A paleolimnological investigation of agricultural intensification, water quality and ecosystem change at Lake Nganoke, southern Wairarapa, NZ

2021 ◽  
Author(s):  
◽  
Jakob Parrish

<p>Decreasing water quality of lakes as a result of anthropogenic landuse and specifically agricultural intensification is well documented in New Zealand. However, monitoring records of lake health are typically short, only commencing once signs of lake deterioration are observed. The shortness of the instrumental record precludes a detailed understanding of the relationship between landuse change, lake ecosystem trajectories and the effectiveness of mitigation strategies such as riparian planting. Paleolimnological reconstruction from sediment cores has the potential to develop high-resolution time series that may extend lake monitoring centuries into the past. This thesis uses paleoenvironmental reconstruction to investigate lake ecosystem change and water quality in Lake Nganoke, Wairarapa, New Zealand as a result of landuse intensification. The primary aim of this thesis is to reconstruct the past environment of Lake Nganoke from a pre-human reference state to the current day to assess: 1) how increased nutrient fluxes associated with landuse intensification have impacted the lake ecosystem; and 2) the ability of riparian zones to buffer these fluxes. The reconstruction was achieved using a multi proxy approach with pre and post-human environments of Lake Nganoke characterised using Palynology, geochemistry, eDNA and hyperspectral scanning.  Māori land clearance was identified at ~AD 1450 (95% CI: AD 1417-1551). The appearance of Pinus pollen and increases in fertilisation and stocking rates placed European arrival at ~AD 1850 (95% CI: 1809 - 1870), while intensification of agricultural landuse occurred post ~AD 1950 (95% CI: 1948 - 1964). The prehuman environment of Lake Nganoke experienced little change, with the catchment dominated by tall trees and likely heavily forested. The lake ecosystem and water quality during this time showed little to no change, with algal productivity likely driven by a constant input of natural nutrients. Post Māori arrival, algal productivity was reduced suggesting an increase in water quality likely driven by added lake marginal plants providing a riparian buffer to terrestrially derived nutrients. Lake productivity increased dramatically post European arrival ~AD 1850, coeval with an increase in sediment Cd, suggesting that fertilisation may have driven a decline in water quality. Further increases in fertilisation and stocking rates indicate additional agricultural nutrient fluxes entering Lake Nganoke in AD 1950 when agriculture intensified. Abundances in denitrifying Gammaproteobacteria indicate increases in nutrient loading while bloom forming Cyanobacteria peak ~AD 2000 before declining till present. Riparian planting following Māori arrival appears sufficient to buffer the lake against increased terrestrial nutrient fluxes associated with land clearing. However, a riparian zone that covers the majority of the catchment post European settlement was inadequate in altering the lake’s degrading ecosystem and water quality trajectory.</p>

2021 ◽  
Author(s):  
◽  
Jakob Parrish

<p>Decreasing water quality of lakes as a result of anthropogenic landuse and specifically agricultural intensification is well documented in New Zealand. However, monitoring records of lake health are typically short, only commencing once signs of lake deterioration are observed. The shortness of the instrumental record precludes a detailed understanding of the relationship between landuse change, lake ecosystem trajectories and the effectiveness of mitigation strategies such as riparian planting. Paleolimnological reconstruction from sediment cores has the potential to develop high-resolution time series that may extend lake monitoring centuries into the past. This thesis uses paleoenvironmental reconstruction to investigate lake ecosystem change and water quality in Lake Nganoke, Wairarapa, New Zealand as a result of landuse intensification. The primary aim of this thesis is to reconstruct the past environment of Lake Nganoke from a pre-human reference state to the current day to assess: 1) how increased nutrient fluxes associated with landuse intensification have impacted the lake ecosystem; and 2) the ability of riparian zones to buffer these fluxes. The reconstruction was achieved using a multi proxy approach with pre and post-human environments of Lake Nganoke characterised using Palynology, geochemistry, eDNA and hyperspectral scanning.  Māori land clearance was identified at ~AD 1450 (95% CI: AD 1417-1551). The appearance of Pinus pollen and increases in fertilisation and stocking rates placed European arrival at ~AD 1850 (95% CI: 1809 - 1870), while intensification of agricultural landuse occurred post ~AD 1950 (95% CI: 1948 - 1964). The prehuman environment of Lake Nganoke experienced little change, with the catchment dominated by tall trees and likely heavily forested. The lake ecosystem and water quality during this time showed little to no change, with algal productivity likely driven by a constant input of natural nutrients. Post Māori arrival, algal productivity was reduced suggesting an increase in water quality likely driven by added lake marginal plants providing a riparian buffer to terrestrially derived nutrients. Lake productivity increased dramatically post European arrival ~AD 1850, coeval with an increase in sediment Cd, suggesting that fertilisation may have driven a decline in water quality. Further increases in fertilisation and stocking rates indicate additional agricultural nutrient fluxes entering Lake Nganoke in AD 1950 when agriculture intensified. Abundances in denitrifying Gammaproteobacteria indicate increases in nutrient loading while bloom forming Cyanobacteria peak ~AD 2000 before declining till present. Riparian planting following Māori arrival appears sufficient to buffer the lake against increased terrestrial nutrient fluxes associated with land clearing. However, a riparian zone that covers the majority of the catchment post European settlement was inadequate in altering the lake’s degrading ecosystem and water quality trajectory.</p>


2015 ◽  
Vol 55 (7) ◽  
pp. 856 ◽  
Author(s):  
M. R. Scarsbrook ◽  
A. R. Melland

The scale and intensity of dairy farming can place pressure on our freshwater resources. These pressures (e.g. excessive soil nutrient concentrations and nitrogen excretion) can lead to changes in the levels of contaminants in waterways, altering the state and potentially affecting the uses and values society ascribes to water. Resource management involves putting in place appropriate responses to address water-quality issues. In the present paper, we highlight trends in the scale and extent of dairying in Australia and New Zealand and describe water-quality pressures, state, impacts and responses that characterise the two countries. In Australia and New Zealand, dairy farming has become increasingly intensive over the past three decades, although the size of Australia’s dairy herd has remained fairly static, while New Zealand’s herd and associated excreted nitrogen loads have nearly doubled. In contrast, effluent management has been improved, and farm waterways fenced, in part to reduce pressure on freshwater. However, both countries show a range of indicators of degraded water-quality state. Phosphorus and nitrogen are the most common water-quality indicators to exceed levels beyond the expected natural range, although New Zealand also has a significant percentage of waterways with faecal contaminants beyond acceptable levels for contact recreation. In New Zealand, nitrate concentrations in waterways have increased, while phosphorus and suspended sediment concentrations have generally decreased over the past decade. Water quality in some coastal estuaries and embayments is of particular concern in Australia, whereas attention in New Zealand is on maintaining quality of high-value lakes, rivers and groundwater resources, as well as rehabilitating waterbodies where key values have been degraded. In both Australia and New Zealand, water-quality data are increasingly being collated and reported but in Australia long-term trends across waterbodies, and spatially comprehensive groundwater-quality data have not yet been reported at national levels. In New Zealand, coastal marine systems, and particularly harbours and estuaries, are poorly monitored, but there are long-term monitoring systems in place for rivers, groundwater and lakes. To minimise pressures on water quality, there is a high reliance on voluntary and incentivised practice change in Australia. In New Zealand, industry-led practice change has been important over the past decade, but regulated environmental limits for dairy farmers are increasing. Dairy industries in both countries have set targets for reducing pressures through sustainability frameworks and accords. To address future drivers such as climate change and increasing domestic and international market demand for sustainability credentials, definitions of values and appropriate targets for waterbodies draining agricultural landscapes will be required. Environmental limits (both natural and societal) will constrain future growth opportunities for dairying and research into continued growth within limits remains a priority in both countries.


2016 ◽  
Vol 75 (s2) ◽  
Author(s):  
Marina M. Manca ◽  
Carla Bonacina ◽  
Norman D. Yan

The idea of launching another special issue of the Journal of limnology on Lake Orta was born in 2014, on the 25<sup>th</sup> anniversary of its liming intervention, during an International symposium on Lake Orta organized and hosted by the Pallanza Institute (<a href="http://www.ise.cnr.it/vb">http://www.ise.cnr.it/vb</a>). The conference did not simply celebrate the past. While the liming of Lake Orta was undoubtedly a great national and international success, the speakers at the conference, instead sought to enlarge and deepen knowledge of patterns and mechanisms of lake ecosystem responses to the water quality improvements, or chemical recovery, that accompanied Lake Orta’s liming.


2021 ◽  
Author(s):  
◽  
Jan C. Thompson

<p>In New Zealand, thousands of small dams have been built in agricultural areas for the purpose of providing water storage for stock and/or irrigation. These dams interrupt flow on perennial or intermittent streams; however, almost nothing is known of the downstream impact of these dams on flow regime, water quality, sediment transfer, and channel morphology. The cumulative impact of these dams at the catchment scale is likely to be significant. The present research was undertaken in the Ruataniwha Plains of Central Hawke's Bay. With further agricultural intensification in the region, it is expected that the construction of small farm dams will continue as farmers try to secure more on-farm water storage. This study attempts to quantify the effects of these storages in two parts: a paired catchment field study to determine the downstream effects of small dams, and a modelling study to investigate the cumulative impact of these storages on streamflow volumes at the regional scale. Results from the paired catchment field study suggest that the regulation of a small stream by three dams (total storage 11.6 ML) has lowered annual runoff volumes, decreased peak flows, increased periods of low flow, and lengthened the response time of the stream to storm events, as compared to the adjacent unregulated stream. Higher precipitation volumes in the winter act to reduce the degree of these impacts, although flow volumes are still lower as compared to the unregulated stream. Throughout the winter, ponds are full and connected to the downstream system, leading to more days of flow on the regulated stream. The regulation of flow has lowered stream erosion potentials, as evidenced by differences in channel bed sediment and morphological characteristics between the two streams. The regulated channel is aggradational, with no evidence of channel scour found over its length. Water quality changes are also observed, with lower water quality measured in the regulated stream and in the ponds, and generally higher water quality measured in the unregulated stream. The impact of farm dams on streamflow in two regional catchments was investigated using two off-the-shelf models (TEDI, Source Catchments). Model predictions suggest that the current volume of farm dam storage has decreased average annual flow volumes in the two catchments by approximately 1%. The predicted streamflow decrease is more significant under scenarios of future agricultural intensification. Regional climate change scenarios do not show a large effect on catchment streamflow volumes. In comparison to known catchment characteristics, the two models have limitations related to some of the model assumptions, and to the inability of the rainfall-runoff model to accurately represent seasonality of flow in the study catchments. On the whole, the models seem to be biased towards underestimating farm dam impact at the regional scale. The study concludes that farm dams have already influenced catchment streamflow and related processes to some degree. At present, the majority of small farm dams in New Zealand do not require resource consent from local council authorities for construction. It is reasonable to expect that farm dams will continue to be built, and it is important that further construction is undertaken with a sound knowledge of the cumulative impact these dams have on catchment processes and existing streamflow volumes. Proper management will mitigate some of these impacts. Management recommendations include the compilation of an inventory of small dams and their characteristics, continued field investigations, and refinement of a catchment model in order to provide a flexible platform for exploring further management options in the region. This study represents a critical first step towards integrated land and water management in the Ruataniwha Plains and will have relevance for the study and management of farm dams in other areas of New Zealand.</p>


2018 ◽  
Vol 47 (1) ◽  
pp. 50-61
Author(s):  
Kari-Matti Vuori ◽  
Kristiina Korjonen-Kuusipuro

Finland is officially marketed as a land of a thousand clean lakes, but people’s concerns on negative trends is common. We used questionnaires and interviews to gather information on people’s experiences on how lakes have been changed, and compared the experiences with limnological research results and administrative lake classifications. Both human observations and limnological evidence detected negative changes in lake ecosystem quality during the past 30-50 years, whereas the administrative lake classification considered lakes to be mainly in good/excellent quality. In addition, small lakes with severe ecosystem changes reported by people, were seldom covered by classification. People’s observations and limnological measurements revealed independent and identical information on the trends in water quality, whereas much of the official lake classification is based on inadequate data and lack of observations on lake littoral areas. Thus, we suggest that people’s everyday experiences should be collected and analyzed more systematically in lake quality assessment processes.


2021 ◽  
Author(s):  
◽  
Jan C. Thompson

<p>In New Zealand, thousands of small dams have been built in agricultural areas for the purpose of providing water storage for stock and/or irrigation. These dams interrupt flow on perennial or intermittent streams; however, almost nothing is known of the downstream impact of these dams on flow regime, water quality, sediment transfer, and channel morphology. The cumulative impact of these dams at the catchment scale is likely to be significant. The present research was undertaken in the Ruataniwha Plains of Central Hawke's Bay. With further agricultural intensification in the region, it is expected that the construction of small farm dams will continue as farmers try to secure more on-farm water storage. This study attempts to quantify the effects of these storages in two parts: a paired catchment field study to determine the downstream effects of small dams, and a modelling study to investigate the cumulative impact of these storages on streamflow volumes at the regional scale. Results from the paired catchment field study suggest that the regulation of a small stream by three dams (total storage 11.6 ML) has lowered annual runoff volumes, decreased peak flows, increased periods of low flow, and lengthened the response time of the stream to storm events, as compared to the adjacent unregulated stream. Higher precipitation volumes in the winter act to reduce the degree of these impacts, although flow volumes are still lower as compared to the unregulated stream. Throughout the winter, ponds are full and connected to the downstream system, leading to more days of flow on the regulated stream. The regulation of flow has lowered stream erosion potentials, as evidenced by differences in channel bed sediment and morphological characteristics between the two streams. The regulated channel is aggradational, with no evidence of channel scour found over its length. Water quality changes are also observed, with lower water quality measured in the regulated stream and in the ponds, and generally higher water quality measured in the unregulated stream. The impact of farm dams on streamflow in two regional catchments was investigated using two off-the-shelf models (TEDI, Source Catchments). Model predictions suggest that the current volume of farm dam storage has decreased average annual flow volumes in the two catchments by approximately 1%. The predicted streamflow decrease is more significant under scenarios of future agricultural intensification. Regional climate change scenarios do not show a large effect on catchment streamflow volumes. In comparison to known catchment characteristics, the two models have limitations related to some of the model assumptions, and to the inability of the rainfall-runoff model to accurately represent seasonality of flow in the study catchments. On the whole, the models seem to be biased towards underestimating farm dam impact at the regional scale. The study concludes that farm dams have already influenced catchment streamflow and related processes to some degree. At present, the majority of small farm dams in New Zealand do not require resource consent from local council authorities for construction. It is reasonable to expect that farm dams will continue to be built, and it is important that further construction is undertaken with a sound knowledge of the cumulative impact these dams have on catchment processes and existing streamflow volumes. Proper management will mitigate some of these impacts. Management recommendations include the compilation of an inventory of small dams and their characteristics, continued field investigations, and refinement of a catchment model in order to provide a flexible platform for exploring further management options in the region. This study represents a critical first step towards integrated land and water management in the Ruataniwha Plains and will have relevance for the study and management of farm dams in other areas of New Zealand.</p>


1997 ◽  
Vol 35 (11-12) ◽  
pp. 325-331 ◽  
Author(s):  
S. A. Anderson ◽  
S. J. Turner ◽  
G. D. Lewis

Faecal enterococci ecology outside the host is of great relevance when using these organisms as indicators of water quality. As a complement to New Zealand epidemiological studies of bathing water quality and health risk, a study of the environmental occurrence of these organisms has been undertaken. Specific concerns over the use of enterococci derive from the unique situation in New Zealand which has few chlorinated sewage effluents, a high ratio of grazing animals to humans, and significant inputs of animal processing effluents into the environment. Human and animal faecal wastes are the main sources, with 106–107cfu/100ml found in human sewage. Analysis of domestic and feral animal faeces found enterococci in the range of 101–106cfu/g with considerable variation between species. The latter observations support the notion that a considerable proportion of the load in urban/rural catchments and waterways (typically 102–103 enterococci cfu/100ml) is derived from non-human sources. Previous studies of enterococci quiescence in marine/fresh waters indicate that they enter a non-growth phase, exposure to sunlight markedly reducing culturability on selective and non-selective media. Enterococci were also found to survive/multiply within specific non-faecal environments. Enterococci on degrading drift seaweed at recreational beaches exceeded seawater levels by 2–4 orders of magnitude, suggesting that expansion had occurred in this permissive environment with resultant potential to contaminate adjacent sand and water. These studies suggest that multiple sources, environmental persistence, and environmental expansion of enterococci within selected niches add considerable complexity to the interpretation of water quality data.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Angela Brenton-Rule ◽  
Daniel Harvey ◽  
Kevin Moran ◽  
Daniel O’Brien ◽  
Jonathon Webber

Abstract Background Podiatrists in New Zealand have a duty of care to assist patients in an emergency, and current cardiopulmonary resuscitation (CPR) certification is a requirement for registration. However, it is unknown how competent and confident podiatrists are in administering CPR and how they would respond in an emergency. Having a health professional who has a competent knowledge of CPR and skills in basic life support, can improve survival rates from sudden cardiac arrest. Therefore, the aim of this study was to survey New Zealand podiatrists to determine their CPR knowledge and qualifications; beliefs about the application of CPR; and perceptions of their competency in CPR. Methods This cross-sectional study used a web-based survey. Participants were New Zealand registered podiatrists with a current annual practising certificate. The 31-item survey included questions to elicit demographic information, CPR practice and attitudes, and CPR knowledge. Responses were collected between March and August 2020. Results 171 podiatrists responded to the survey. 16 % of the podiatrists (n = 28) had performed CPR in an emergency, with a 50 % success rate. Participants were predominantly female (n = 127, 74 %) and working in private practice (n = 140,82 %). Nearly half of respondents were younger than 40 years (n = 75,44 %) and had less than 10 years of clinical experience (n = 73, 43 %). Nearly all (n = 169,97 %) participants had received formal CPR training in the past two years, with 60 % (n = 105) receiving training in the past 12 months. Most respondents (n = 167,98 %) self-estimated their CPR ability as being effective, very effective, or extremely effective. Participants’ knowledge of CPR was variable, with the percentage of correct answers for CPR protocol statements ranging between 20 and 90 %. Conclusions This study provides the first insight into New Zealand podiatrists’ CPR knowledge and perceptions. Podiatrists were found to have high levels of CPR confidence but demonstrated gaps in CPR knowledge. Currently, New Zealand registered podiatrists require biennial CPR re-certification. However, resuscitation authorities in New Zealand and overseas recommend an annual update of CPR skills. Based on this study’s findings, and in line with Australia and the United Kingdom, the authors recommend a change from biennial to annual CPR re-certification for podiatrists in New Zealand. Trial registration The study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12620001144909).


Sign in / Sign up

Export Citation Format

Share Document