small dams
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 35)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Jan C. Thompson

<p>In New Zealand, thousands of small dams have been built in agricultural areas for the purpose of providing water storage for stock and/or irrigation. These dams interrupt flow on perennial or intermittent streams; however, almost nothing is known of the downstream impact of these dams on flow regime, water quality, sediment transfer, and channel morphology. The cumulative impact of these dams at the catchment scale is likely to be significant. The present research was undertaken in the Ruataniwha Plains of Central Hawke's Bay. With further agricultural intensification in the region, it is expected that the construction of small farm dams will continue as farmers try to secure more on-farm water storage. This study attempts to quantify the effects of these storages in two parts: a paired catchment field study to determine the downstream effects of small dams, and a modelling study to investigate the cumulative impact of these storages on streamflow volumes at the regional scale. Results from the paired catchment field study suggest that the regulation of a small stream by three dams (total storage 11.6 ML) has lowered annual runoff volumes, decreased peak flows, increased periods of low flow, and lengthened the response time of the stream to storm events, as compared to the adjacent unregulated stream. Higher precipitation volumes in the winter act to reduce the degree of these impacts, although flow volumes are still lower as compared to the unregulated stream. Throughout the winter, ponds are full and connected to the downstream system, leading to more days of flow on the regulated stream. The regulation of flow has lowered stream erosion potentials, as evidenced by differences in channel bed sediment and morphological characteristics between the two streams. The regulated channel is aggradational, with no evidence of channel scour found over its length. Water quality changes are also observed, with lower water quality measured in the regulated stream and in the ponds, and generally higher water quality measured in the unregulated stream. The impact of farm dams on streamflow in two regional catchments was investigated using two off-the-shelf models (TEDI, Source Catchments). Model predictions suggest that the current volume of farm dam storage has decreased average annual flow volumes in the two catchments by approximately 1%. The predicted streamflow decrease is more significant under scenarios of future agricultural intensification. Regional climate change scenarios do not show a large effect on catchment streamflow volumes. In comparison to known catchment characteristics, the two models have limitations related to some of the model assumptions, and to the inability of the rainfall-runoff model to accurately represent seasonality of flow in the study catchments. On the whole, the models seem to be biased towards underestimating farm dam impact at the regional scale. The study concludes that farm dams have already influenced catchment streamflow and related processes to some degree. At present, the majority of small farm dams in New Zealand do not require resource consent from local council authorities for construction. It is reasonable to expect that farm dams will continue to be built, and it is important that further construction is undertaken with a sound knowledge of the cumulative impact these dams have on catchment processes and existing streamflow volumes. Proper management will mitigate some of these impacts. Management recommendations include the compilation of an inventory of small dams and their characteristics, continued field investigations, and refinement of a catchment model in order to provide a flexible platform for exploring further management options in the region. This study represents a critical first step towards integrated land and water management in the Ruataniwha Plains and will have relevance for the study and management of farm dams in other areas of New Zealand.</p>


2021 ◽  
Author(s):  
◽  
Jan C. Thompson

<p>In New Zealand, thousands of small dams have been built in agricultural areas for the purpose of providing water storage for stock and/or irrigation. These dams interrupt flow on perennial or intermittent streams; however, almost nothing is known of the downstream impact of these dams on flow regime, water quality, sediment transfer, and channel morphology. The cumulative impact of these dams at the catchment scale is likely to be significant. The present research was undertaken in the Ruataniwha Plains of Central Hawke's Bay. With further agricultural intensification in the region, it is expected that the construction of small farm dams will continue as farmers try to secure more on-farm water storage. This study attempts to quantify the effects of these storages in two parts: a paired catchment field study to determine the downstream effects of small dams, and a modelling study to investigate the cumulative impact of these storages on streamflow volumes at the regional scale. Results from the paired catchment field study suggest that the regulation of a small stream by three dams (total storage 11.6 ML) has lowered annual runoff volumes, decreased peak flows, increased periods of low flow, and lengthened the response time of the stream to storm events, as compared to the adjacent unregulated stream. Higher precipitation volumes in the winter act to reduce the degree of these impacts, although flow volumes are still lower as compared to the unregulated stream. Throughout the winter, ponds are full and connected to the downstream system, leading to more days of flow on the regulated stream. The regulation of flow has lowered stream erosion potentials, as evidenced by differences in channel bed sediment and morphological characteristics between the two streams. The regulated channel is aggradational, with no evidence of channel scour found over its length. Water quality changes are also observed, with lower water quality measured in the regulated stream and in the ponds, and generally higher water quality measured in the unregulated stream. The impact of farm dams on streamflow in two regional catchments was investigated using two off-the-shelf models (TEDI, Source Catchments). Model predictions suggest that the current volume of farm dam storage has decreased average annual flow volumes in the two catchments by approximately 1%. The predicted streamflow decrease is more significant under scenarios of future agricultural intensification. Regional climate change scenarios do not show a large effect on catchment streamflow volumes. In comparison to known catchment characteristics, the two models have limitations related to some of the model assumptions, and to the inability of the rainfall-runoff model to accurately represent seasonality of flow in the study catchments. On the whole, the models seem to be biased towards underestimating farm dam impact at the regional scale. The study concludes that farm dams have already influenced catchment streamflow and related processes to some degree. At present, the majority of small farm dams in New Zealand do not require resource consent from local council authorities for construction. It is reasonable to expect that farm dams will continue to be built, and it is important that further construction is undertaken with a sound knowledge of the cumulative impact these dams have on catchment processes and existing streamflow volumes. Proper management will mitigate some of these impacts. Management recommendations include the compilation of an inventory of small dams and their characteristics, continued field investigations, and refinement of a catchment model in order to provide a flexible platform for exploring further management options in the region. This study represents a critical first step towards integrated land and water management in the Ruataniwha Plains and will have relevance for the study and management of farm dams in other areas of New Zealand.</p>


2021 ◽  
Author(s):  
James A. McKelvey ◽  
Miguel A. Pando
Keyword(s):  

Author(s):  
Bilal Abdullah Nasir

The construction of small-hydro power stations does not require high technologies, but needs to provide a river or stream water is smooth. Through the establishment of small dams on the stream can control the amount of water necessary to rotate the water turbine, which in turn converts the potential energy of water into kinetic energy. Through the transfer of kinetic energy of rotation of the turbine to the generator can convert this energy into electrical energy. The idea of ​​our plan of research for electrical energy from the power of water using small- hydroelectric plants, which can be built on small rivers, streams, and through the construction of small dams to control the amount of water. Electrical energy derived from small- hydroelectric plants could help feed the electrical loads to areas isolated from the national grid and can be linked with the national grid to add additional electric power.


Author(s):  
Bladimir Suárez ◽  
José David Vera Rodríguez ◽  
Francisco Botero ◽  
Byron Suárez Agudelo ◽  
William Giraldo Jiménez

This article presents the investigation, analysis, and results of the intake gate closure of two vertical fixed-wheel gates at the hydroelectric project Ituango in Colombia (2400 MW) under free- flow conditions. This atypical operation was considered successful notwithstanding adverse conditions, and therefore, it can be classified as a unique operation in the field of hydraulic gates. In this article, some relevant parameters, such as the hydraulic force of the servomotor during the operation of the gate, were measured before and after the operation and analyzed, and the results were presented. A new chart is proposed for the downpull coefficient based on the collected data, which could be implemented in the closure of gates against the free flow. Considering the abovementioned factors, the authors propose some recommendations and present drawn conclusions contributing to state of the art on design, manufacturing, and operation of this type of hydraulic gates and structures for large and small dams under adverse and extreme conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Solomon Kibret ◽  
Matthew McCartney ◽  
Jonathan Lautze ◽  
Luxon Nhamo ◽  
Guiyun Yan

AbstractExpansion of various types of water infrastructure is critical to water security in Africa. To date, analysis of adverse disease impacts has focused mainly on large dams. The aim of this study was to examine the effect of both small and large dams on malaria in four river basins in sub-Saharan Africa (i.e., the Limpopo, Omo-Turkana, Volta and Zambezi river basins). The European Commission’s Joint Research Center (JRC) Yearly Water Classification History v1.0 data set was used to identify water bodies in each of the basins. Annual malaria incidence data were obtained from the Malaria Atlas Project (MAP) database for the years 2000, 2005, 2010 and 2015. A total of 4907 small dams and 258 large dams in the four basins, with 14.7million people living close (< 5 km) to their reservoirs in 2015, were analysed. The annual number of malaria cases attributable to dams of either size across the four basins was 0.9–1.7 million depending on the year, of which between 77 and 85% was due to small dams. The majority of these cases occur in areas of stable transmission. Malaria incidence per kilometre of reservoir shoreline varied between years but for small dams was typically 2–7 times greater than that for large dams in the same basin. Between 2000 and 2015, the annual malaria incidence showed a broadly declining trend for both large and small dam reservoirs in areas of stable transmission in all four basins. In conclusion, the malaria impact of dams is far greater than previously recognized. Small and large dams represent hotspots of malaria transmission and, as such, should be a critical focus of future disease control efforts.


Sign in / Sign up

Export Citation Format

Share Document