RESTRUCTURING OF VESSELS OF THE THYROID GLAND AFTER EXPERIMENTAL THERMAL INJURY ALONG WITH APPLICATION OF MINCED SUBSTRATE OF FREEZE-DRIED XENOGRAFT

2019 ◽  
Vol 15 (68) ◽  
pp. 183
Author(s):  
V. G. Korytskyi ◽  
Z. M. Nebesna ◽  
S. B. Kramar
2018 ◽  
Vol 22 (4) ◽  
pp. 760-765
Author(s):  
О.І. Tiron

Despite the important role of the thyroid gland in regulating the functions of the body, the gland is quite sensitive to the adverse effects of various factors on the body. The purpose of the work is to analyze modern sources of scientific literature devoted to the study of the influence of exo- and endogenous factors on the morpho-functional properties of the thyroid gland. Literary data on the influence on the thyroid gland of various environmental chemicals, insufficient or excessive consumption of iodine and selenium, vitamin D deficiency, exposure to pharmaceuticals, smoking, environmental temperature, irradiation, infections, stress, as well as factors of the internal environment, such as atherosclerosis and pregnancy. There are a small number of modern scientific studies concerning the influence on the structure and function of the thyroid gland consequences of thermal injury of the skin.


2021 ◽  
Vol 39 ◽  
Author(s):  
Aman Prasad ◽  
◽  
Jessica Durrant ◽  
Daniel Smeak ◽  
Jason Newman ◽  
...  

Introduction: Bipolar electrocautery devices used to achieve intraoperative hemostasis carry risk of imparting thermal energy to adjacent tissue, leading to postoperative morbidity. The aim of this study was to compare a new vessel sealing device, the CoolSeal™ Reveal (Bolder Surgical, Louisville, Colorado), with an established industry standard device, the LigaSure™ Exact Dissector (Valleylab, Boulder, Colorado), to assess their safety and the extent to which they impart thermal damage to tissue during thyroid surgery. Materials and Methods: Vascular bundles associated with the thyroid gland in anesthetized sheep were exposed and sealed with a single activation of each device and excised en bloc. Additionally, vascular structures of the sheep were also sealed 0, 1, or 2mm adjacent to the recurrent laryngeal nerve (RLN). Vascular and RLN samples were processed for histopathologic evaluation and assessed for extent of thermal injury, seal width, and coagulative changes. Results: The mean thermal injury extent across all sample sizes and vessel types was significantly lower for the CoolSeal™ Reveal device (547.2 ± 27.9μm) compared to the LigaSure™ device (802.7± 48.6μm) (p<0.001). Seal widths were significantly smaller in samples sealed with the CoolSeal™ Reveal device (899.0 ± 14.9μm) than samples sealed with the LigaSure™ device (1645.3 ± 160.3μm) (p<0.001). Conclusion: The CoolSeal™ Reveal device demonstrates significantly lower thermal spread in vivo compared to the LigaSure™ Exact Dissector. These results indicate that the CoolSeal™ Reveal is an effective tool for sealing blood vessels and minimizing thermal damage to adjacent structures during delicate surgeries or in narrow surgical fields associated with the thyroid gland.


1963 ◽  
Vol 59 (4) ◽  
pp. 467-478 ◽  
Author(s):  
R. Ekholm ◽  
H. F. Helander ◽  
T. Zelander

2018 ◽  
Vol 24 (3) ◽  
pp. 37-42
Author(s):  
V.G. Koritskiy ◽  
Z.M. Nebesna

Thermal injury causes severe structural and metabolic disturbances not only of the skin itself, but also of all organs and systems of the affected organism, is a manifestation of a complex symptom complex - a burn disease. Of particular importance in patients with burns are changes in the endocrine system. The aim of the study was to establish the microscopic and electron-microscopic reorganization of the components of the thyroid gland of animals after thermal damage on 14 day after experimental thermal injury. A III degree burn was applied under ketamine anesthesia with copper plates heated in boiled water to a temperature of 97-100°C. The size of the lesion area was 18-20% of the epilated surface of the body of rats. An experimental study of the structural components of the thyroid gland after a burn injury was performed on laboratory white male rats weighing 160-180 g. Rats euthanasia was performed after ketamine anesthesia by decapitation. In the experiment, the study of the microscopic and submicroscopic state of the follicles and hemocapillaries of the thyroid gland after thermal injury of the III degree. It has been established that in the toxemia stage after the application of the burn injury on 14 day (late toxemia stage), significant destructive and degenerative changes are found in the thyrocytes of the wall of the follicles and hemocapillaries, the organ acquires a macrofollicular structure. The height of thyrocytes decreases, the nuclei and organelles of cytoplasm are significantly damaged, the number and height of microvilli on their apical surface decreases, which negatively affects the cell's secretory cycle and transcapillary organ metabolic processes. The established destructive changes in the blood capillaries and thyrocytes of the follicles are the morphological manifestation of the suppression of the secretory activity of the thyroid gland during thermal injury and corresponds to the hypofunctional state of the organ.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
Anthony Demsey ◽  
Christopher W. Stackpole

The murine leukemia viruses are type-C oncornaviruses, and their release from the host cell involves a “budding” process in which the newly-forming, RNA-containing virus core becomes enveloped by modified cell surface membrane. Previous studies revealed that the released virions possess a dense array of 10 nm globular projections (“knobs”) on this envelope surface, and that these knobs contain a 70, 000 MW glycoprotein (gp70) of viral origin. Taking advantage of this distinctive structural formation, we have developed a procedure for freeze-drying and replication of intact cells which reveals surface detail superior to other surface replica techniques, and sufficient to detect even early stages of virus budding by localized aggregation of these knobs on the cell surface.Briefly, cells growing in monolayer are seeded onto round glass coverslips 10-12 mm in diameter. After a period of growth, cells are fixed in situ for one hour, usually with 1% OsO4 in 0. 1 M cacodylate buffer, and rinsed in distilled water.


Sign in / Sign up

Export Citation Format

Share Document