scholarly journals Analysis of the cyclogram of maintaining a low working orbit of a space-craft of the AIST-2 class using an electric jet engine

2020 ◽  
Vol 4 (2) ◽  
pp. 61-71
Author(s):  
V. V. Volotsuev ◽  
V. V. Salmin

A study was made of the time parameters of the cyclogram for maintaining the low working orbit of a small spacecraft of the AIST-2 class using an electric jet engine. The analysis is made for working orbits with a height in the range from four hundred to five hundred kilometers with a changing upper atmosphere of the Earth, depending on the level of solar activity. The calculations used the thrust of an electric jet engine equal to twenty millinewtons with a service life of not more than a thousand hours. The methodological and software were used: for calculating the level of aerodynamic drag depending on the level of solar activity; for modeling and analysis of the parameters of the orbital motion of the spacecraft under the action of corrective and aerodynamic forces. The results of the analysis showed that the electric jet engine allows maintaining the working orbit in the range of designated heights. If the average altitude of the orbit deviates by no more than three kilometers, correction can be carried out in less than a day. The time of one correction cycle can vary from four to four hundred and seventy-eight days, depending on the level of solar activity and the design and ballistic parameters of the spacecraft. The operating life of an electric jet engine equal to one thousand hours can maintain the working orbit of the spacecraft for more than seven years with low solar activity in the range of the studied heights.

2018 ◽  
pp. 5-11
Author(s):  
Александр Вячеславович Голубек ◽  
Николай Михайлович Дронь ◽  
Людмила Григорьевна Дубовик ◽  
Николай Викторович Поляков

The given article is devoted one of most acute problems of use of a space – clearing of low earth orbits from space debris. As one of ways of its solution is offered withdrawal of large objects of space debris in dense layers of atmosphere of the Earth with use of the propulsion system and an aerodynamic sail. The propulsion system supplies formation of an elliptical orbit of withdrawal with a perigee in an upper atmosphere, and an aerodynamic sail - gradual slowing down at the expense of effect on a sheaf «a withdrawal means - space object» forces of an aerodynamic drag of atmosphere. Obviously that efficiency of such method of withdrawal in many respects depends on a condition of the upper atmosphere which is function of solar activity. Hence, and energy expenses will depend not only on altitude of an initial orbit, ballistic factor, but also from a phase of solar activity at the moment of the beginning of withdrawal of space object, changing cyclically with the period in 11 years. On the basis of it is possible to draw a conclusion on repetition of change of energy expenses and minimum presence. The problem of minimization of energy expenses for withdrawal taking into account dynamically changing atmosphere of the Earth in the presence of limitations on lifetime is considered. For its solution imitating modeling of motion a sheaf «a withdrawal means - space object» in a near-earth space under the influence of gravity and an aerodynamic drag of atmosphere of the Earth is used. Parametric optimization of weight of the fuel components necessary for formation of an orbit of withdrawal with lifetime 25 years from circular orbits in altitude 500…1500 km, depending on a phase of solar activity at the moment of the beginning of withdrawal and ballistic factor is conducted. Areas of the minimum expenses of the fuel components supplying withdrawal are received. The estimation of efficiency of an offered combined method concerning withdrawal by actuation of propulsion system is executed. It is shown that combined withdrawal supplies economies of weight of fuel components in comparison with withdrawal by an orbital stage with propulsion system in limits from 20 % to 90 % depending on altitude of an initial orbit and ballistic factor.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Prakash Pillai S ◽  

This paper intended to highlight the simple, quick and reliable method to detect impending earthquake�s location. Volcanic eruption precursors are originated only around the volcanos, like that the onshore earthquake precursors are originated only from earthquake epicenter zones. Epicenter zones are earthquake zones, a little variation of fault zone, it comprises movable tectonic plates. Due to the orbital motion of the earth, centrifugal force generated, this centrifugal force is the major driving force of tectonic plates. The position of the orbital motion of the earth generated seasonal variations/atmospheric weather anomalies as onshore earthquake precursors and earthquakes, year after year repeating at same places. The generation process of seasonal weather anomalies is the part of generation process of earthquakes at epicenter zones. Both seasonal weather anomalies and seismic anomalies are not continued all through the year at same places. When earth comes to particular position, tectonic plates of particular epicenter zones are set to more active and becomes unstable epicenter zones, causes identifiable, observable, recordable and testable onshore earthquake precursors 1-15 days prior to earthquakes occur.


2021 ◽  
Author(s):  
Igor Shevchenko

Abstract The variations of solar activity and distribution of solar energy due to the rotation of the Earth around its axis and around the Sun exert a strong influence on the self-organization of water molecules. As a result, the rate of hydrolytic processes with the participation of water clusters displays diurnal, very large annual variations, and is also modulated by the 11-year cycles of solar activity. It also depends on the geographic latitude and can be different at the same time in the Northern and Southern Hemispheres. This phenomenon is well accounted for by the influence of muons on the self-organization of water molecules. Muons are constantly generated in the upper atmosphere by the solar wind. They reach the surface of the Earth and can penetrate to some depth underground. Buildings also absorb muons. For this reason, the rate of hydrolysis outside and inside buildings, as well as underground, can differ significantly from each other.


2021 ◽  
Author(s):  
Joe Zender ◽  
Johannes Benkhoff ◽  
Go Murakami ◽  
Elsa Montagnon

<p><strong>Abstract</strong></p> <p>The BepiColombo spacecraft was launched on 20 October 2018 from the European spaceport in French Guyana and is currently on its way to Mercury. On its way, the spacecraft will swing-by Mercury six times in its stacked configuration, before releasing the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) in their corresponding orbits around the target planet.</p> <p><strong>Introduction</strong></p> <p>Mercury is in many ways a very different planet from what we were expecting. On 20 October 2018 the BepiColombo spacecraft [1] started its 7 year journey to the innermost terrestrial planet to investigate on the fundamental questions about its evolution, composition, interior, magnetosphere, and exosphere.</p> <p>BepiColombo is a joint project between the Euro- pean Space Agency (ESA) and the Japanese Aero- space Exploration Agency (JAXA). The Mission con- sists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). From their dedicated orbits the two space- craft will be studying the planet and its environment.</p> <p>The mission has been named in honor of Giuseppe (Bepi) Colombo (1920–1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.</p> <p>During the cruise phase, the spacecraft flies in a stacked configuration: the MMO and MPO are mounted ontop of the Mercury Transfer Module (MTM). As a consequence, most remote sensing instruments onboard the MPO are mounted towards the MTM and have a fully obstructed field-of-view. The MMO instrumentation is shielded by a protection shield (MOSIF) and several instruments still await the deployment on measurement booms.</p> <p>Despite the reduced instrument availability, scientific and engineering operations will be scheduled during the cruise phase, especially during the swing-bys.</p> <p><strong>Mercury Swing-bys</strong></p> <p>Following the Earth and two Venus swing-bys, six Mercury swing-bys are foreseen from October 2021 until 9 January 2025. The poster will discuss the flyby geometries and potential operation opportunities, in comparison with the three MESSENGER Mercury swing-bys from 2008 and 2009 [2][3].</p> <p><strong>References: </strong>[1] Benkhoff, J., et al. (2010) <em>Planet. Space Sci. </em>58, 2-20. [2] Baker, D.N. et al. (2011) Planet. Space Sci 59, 2066-2074. [3] McNutt, R.L. et al. (2010), Acta Astronautica V67, Iss 7-8, p 681-687</p>


2021 ◽  
Author(s):  
Yasmina Bouderba ◽  
Ener Aganou ◽  
Abdenaceur Lemgharbi

<p>In this work we will show the behavior of the horizontal component H of the Earth Magnetic Field (EMF) along the seasons during the period of solar cycle 24 lasting from 2009 to 2019. By means of  continuous measurements of geomagnetic components (X, Y) of the EMF, we compute the horizontal component H at the Earth’s surface. The data are recorded with a time resolution of one minute at Tamanrasset observatory in Algeria at the geographical coordinates of 22.79° North and 5.53° East. These data are available from the INTERMAGNET network. We find that the variation in amplitude of the hourly average of H component at low latitude changes from a season to another and it is greater at the maximum solar activity than at the minimum solar activity.</p><p><strong>Keywords:</strong> Solar cycle 24, Season, Horizontal component H. </p>


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1973 ◽  
Vol 15 (1) ◽  
pp. 106-107
Author(s):  
P. Simon

Although worldwide cooperation in surveying activity has had a long history, the continuation of international programs in this area is compromised by several factors, in particular by an overall decrease of financial support which has led to concentration of our limited resources and efforts on the large research instruments. In such a situation we believe it important not to lose sight of the fact that systematic data on the ‘full disk’ state of solar activity is still, and will remain, of great significance to students both of the Sun and of the Earth and its environment. As examples, we note that the large quantity of space data (e.g., on X-rays, EUV particles, and fields) cannot be fully studied without the supporting data obtained in classical ground-based optical and radio surveys; the same applies to magnetospheric observations.Nor can we always know what critical future needs will be satisfied by our systematic daily surveys. An obvious example is the daily measure of sunspot area, others are provided by the Cartes de la Chromosphère and the Mount Wilson magnetograms which for years at a time have attracted little interest and quite suddenly have emerged as source data of inestimable value in quite unanticipated studies.


Sign in / Sign up

Export Citation Format

Share Document