scholarly journals RETURN LEVEL ESTIMATES OF MAXIMUM TEMPERATURE FOR DIFFERENT RETURN PERIOD

Author(s):  
Muhammad Ali
2008 ◽  
Vol 47 (2) ◽  
pp. 368-374 ◽  
Author(s):  
James B. Elsner ◽  
Thomas H. Jagger ◽  
Kam-biu Liu

Abstract Hurricane return levels estimated using historical and geological information are quantitatively compared for Lake Shelby, Alabama. The minimum return level of overwash events recorded in sediment cores is estimated using a modern analog (Hurricane Ivan of 2004) to be 54 m s−1 (105 kt) for a return period of 318 yr based on 11 events over 3500 yr. The expected return level of rare hurricanes in the observed records (1851–2005) at this location and for this return period is estimated using a parametric statistical model and a maximum likelihood procedure to be 73 m s−1 (141 kt), with a lower bound on the 95% confidence interval of 64 m s−1 (124 kt). Results are not significantly different if data are taken from the shorter 1880–2005 period. Thus, the estimated sensitivity of Lake Shelby to overwash events is consistent with the historical record given the model. In fact, assuming the past is similar to the present, the sensitivity of the site to overwash events as estimated from the model is likely more accurately set at 64 m s−1.


2020 ◽  
Vol 12 (21) ◽  
pp. 3604
Author(s):  
Guangxin He ◽  
Zhongliang Li

In this dissertation, the author adopted the normalized difference vegetation index (NDVI) and meteorological data from 1982 to 2016 of the typical climate zones in coastal areas of China to analyze the influence of daytime and nighttime warming asymmetric changes in different seasons on vegetation activities during the growing season period according to the copula function theory optimized based on Markov chain Monte Carlo (MCMC). The main conclusions are as follows: (1) The seasonal daytime and nighttime warming trends of Guangdong, Jiangsu and Liaoning over the past 35 years were significant, and the daytime and nighttime warming rates were asymmetric. In spring and summer of Guangdong province, the warming rate in the daytime was higher than that at night, while, in autumn, the opposite law was observed. However, the warming rate in the daytime was lower than that at night in Jiangsu and Liaoning provinces. There were latitude differences in diurnal and nocturnal warming rate. (2) The daytime and nighttime warming influences on vegetation showed significant seasonal differences in these three regions. In Guangdong, the influence of nighttime warming on vegetation growth in spring is greater than that in summer, and the influences of daytime warming on vegetation growth from strong to weak were spring, summer and autumn. In Jiangsu, both the influences of daytime and nighttime warming on vegetation growth in summer were less than that in autumn. In Liaoning, both the influences of daytime and nighttime warming on vegetation growth from strong to weak were autumn, spring and summer. (3) In Guangdong, Jiangsu and Liaoning provinces, their maximum temperature (Tmax) and minimum temperature (Tmin) and the joint probability distribution functions of NDVI, all had little effect on NDVI when Tmax and Tmin respectively reached their minimum values, but their influences on NDVI were obvious when Tmax and Tmin respectively reached their maximum values. (4) The smaller the return period, the larger the range of climate factor and NDVI, which has indicated that when the climate factor is certain, the NDVI is more likely to have a smaller return period, and the frequency of NDVI over a certain period is higher. In addition, the larger the climate factor, the greater the return period is and NDVI is less frequent over a certain period of time. This research can help with deep understanding of the dynamic influence of seasonal daytime and nighttime asymmetric warming on the vegetation in typical coastal temperature zones of China under the background of global climate change.


2018 ◽  
Vol 18 (10) ◽  
pp. 2641-2651 ◽  
Author(s):  
Guillaume Evin ◽  
Thomas Curt ◽  
Nicolas Eckert

Abstract. Very large wildfires have high human, economic, and ecological impacts so that robust evaluation of their return period is crucial. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. Whereas this policy is probably efficient for reducing the mean burned area (BA), its effect on the largest fires is still unknown. In this study, we make use of statistical extreme value theory (EVT) to compute return periods of very large BAs in southern France, for two distinct periods (1973 to 1994 and 1995 to 2016) and for three pyroclimatic regions characterized by specific fire activities. Bayesian inference and related predictive simulations are used to fairly evaluate related uncertainties. Results demonstrate that the BA corresponding to a return period of 5 years has actually significantly decreased, but that this is not the case for large return periods (e.g., 50 years). For example, in the most fire-prone region, which includes Corsica and Provence, the median 5-year return level decreased from 5000 to 2400 ha, while the median 50-year return level decreased only from 17 800 to 12 500 ha. This finding is coherent with the recent occurrence of conflagrations of large and intense fires clearly far beyond the suppression capacity of firemen. These fires may belong to a new generation of fires promoted by long-term fuel accumulation, urbanization into the wildland, and ongoing climate change. These findings may help adapt the operational system of fire prevention and suppression to ongoing changes. Also, the proposed methodology may be useful for other case studies worldwide.


2011 ◽  
Vol 24 (3) ◽  
pp. 881-892 ◽  
Author(s):  
Francis W. Zwiers ◽  
Xuebin Zhang ◽  
Yang Feng

Abstract Observed 1961–2000 annual extreme temperatures, namely annual maximum daily maximum (TXx) and minimum (TNx) temperatures and annual minimum daily maximum (TXn) and minimum (TNn) temperatures, are compared with those from climate simulations of multiple model ensembles with historical anthropogenic (ANT) forcing and with combined anthropogenic and natural external forcings (ALL) at both global and regional scales using a technique that allows changes in long return period extreme temperatures to be inferred. Generalized extreme value (GEV) distributions are fitted to the observed extreme temperatures using a time-evolving pattern of location parameters obtained from model-simulated extreme temperatures under ANT or ALL forcing. Evaluation of the parameters of the fitted GEV distributions shows that both ANT and ALL influence can be detected in TNx, TNn, TXn, and TXx at the global scale over the land areas for which there are observations, and also regionally over many large land areas, with detection in more regions in TNx. Therefore, it is concluded that the influence of anthropogenic forcing has had a detectable influence on extreme temperatures that have impacts on human society and natural systems at global and regional scales. External influence is estimated to have resulted in large changes in the likelihood of extreme annual maximum and minimum daily temperatures. Globally, waiting times for extreme annual minimum daily minimum and daily maximum temperature events that were expected to recur once every 20 yr in the 1960s are now estimated to exceed 35 and 30 yr, respectively. In contrast, waiting times for circa 1960s 20-yr extremes of annual maximum daily minimum and daily maximum temperatures are estimated to have decreased to fewer than 10 and 15 yr, respectively.


2017 ◽  
Author(s):  
Hemin Sun ◽  
Tong Jiang ◽  
Cheng Jing ◽  
Buda Su ◽  
Guojie Wang

Abstract. Return period estimation plays an important role in the engineering practices of water resources and disaster management, but uncertainties accompany the calculation process. Based on the daily discharge records at two gauging stations (Cuntan and Pingshan) on the upper Yangtze River, three sampling methods (SMs; (annual maximum, peak over threshold, and decadal peak over threshold), five distribution functions (DFs; gamma, Gumbel, lognormal, Pearson III, and general extreme value), and three parameterization methods (PMs; maximum likelihood, L-Moment, and method of moment) were applied to analyze the uncertainties in return period estimation. The estimated return levels based on the different approaches were found to differ considerably at each station. The range of discharge for a 20-year return period was 63,800.8–74,024.1 m3 s−1 for Cuntan and 23,097.8–25,595.3 m3 s−1 for Pingshan, when using the 45 combinations of SMs, DFs, and PMs. For a 1000-year event, the estimated discharge ranges increased to 74,492.5–125,658.0 and 27,339.2–41,718.1 m3 s−1 for Cuntan and Pingshan, respectively. Application of the analysis of variance method showed that the total sum of the squares of the estimated return levels increased with the widening of the return periods, suggestive of increased uncertainties. However, the contributions of the different sources to the uncertainties were different. For Cuntan, where the discharge changed significantly, the SM appeared to be the largest source of uncertainty. For Pingshan, where the discharge series remained almost stable, the DF contributed most to the uncertainty. Therefore, multiple uncertainty sources in estimating return periods should be considered to meet the demands of different planning purposes. The research results also suggest that uncertainties of return level estimation could be reduced if an optimized DF were used, or if the decadal peak over threshold SM were used, which is capable of representing temporal changes of hydrological series.


2016 ◽  
Vol 10 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Michał Marosz

Abstract The paper presents the analysis of the anemological conditions variability over Poland with the usage of geostrophic wind vector as an objective (and homogenous) information concerning the airflow over the area of research. The geostrophic wind vector components are calculated using SLP and air temperature (at sigma 995 level) at selected gridpoints which were subsequently interpolated to a central point thus describing the average flow over the research area. The data originated from NCEP/NCAR Reanalysis and its temporal range was 1951-2014. The analysis covers statistical characteristics of the overall annual cycle as well as trend analysis of the airflow features over Poland: geostrophic wind vector module (V), and its zonal (u) and meridional (v) components. Aside from general statistical characteristics for averages and extremes (quantiles 10% and 90%) GEV distribution was fitted to maximum annual/monthly geostrophic wind speed values which allowed the estimation of return levels for selected return periods. For the period 1951-2014 average geostrophic wind velocity over Poland equals 7.4 ms−1 and the 99% quantile exceeds 21 ms−1. Maximum speed ever recorded equalled 37.6 ms−1. Geostrophic wind vector module (V) and its components (u, v) exhibit clear annual cycle with the highest V values in winter. Positive (westerly) u values dominate in the colder part of the year. In spring the dominance of eastern advection appears and in summer the prevalence of westerly flow is only minimal. There exists a distinctive variability of decadal directional structure and this is clearly visible in the substantial increase in the share of western sector frequencies in 1981-1990 and following decade. Monthly V averages do not exhibit (except October) statistically significant trends whereas in spring and summer months as well as for annual averages of u component trend is significant. There are virtually no significant changes in the v values. GEV analysis allowed the year to be divided into two parts. Warm one with relatively low return levels – for many months not exceeding 20 ms−1 even for 50y return period. On the other hand winter months return level values exceed 30 ms−1 even for relatively short return periods (20y) with upper estimates for 100y return period closing to 40 ms−1.


2018 ◽  
Author(s):  
Guillaume Evin ◽  
Thomas Curt ◽  
Nicolas Eckert

Abstract. Very large wildfires have high human, economic and ecological impacts so that robust evaluation of their return period is crucial. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. Whereas this policy is probably efficient for reducing the mean burned area (BA), its effect on the largest fires is still unknown. In this study, we make use of statistical Extreme Value Theory (EVT) to compute return periods of very large BA in southern France, for two distinct periods (1973 to 1994, and 1995 to 2016) and for three pyroclimatic regions characterized by specific fire activities. Bayesian inference and related predictive simulations are used to fairly evaluate related uncertainties. Results demonstrate that the BA corresponding to a return period of 5 years has actually significantly decreased, but that this is not the case for large return periods (e.g. 50 years). For example, in the most fire-prone region, which includes Corsica and Provence, the median 5-year return level decreased from 5,000 ha. to 2,400 ha., while the median 50-year return level decreased only from 17,800 ha. to 12,500 ha. This finding is coherent with the recent occurrence of conflagrations of large and intense fires clearly far beyond the suppression capacity of firemen. These fires may belong to a new generation of fires promoted by long-term fuel accumulation, urbanization into the wildland, and ongoing climate change. These findings may help adapting the operational system of fire prevention and suppression to ongoing changes. Also, the proposed methodology may be useful for other case studies worldwide.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 53
Author(s):  
Alemtsehai A. Turasie

Several studies have indicated that the social, economic and other impacts of global warming can be linked with changes in the frequency and intensity of extreme weather/climate events. Developing countries, particularly in the African region, are highly affected by extreme events such as high temperature, usually followed/accompanied by drought. Therefore, studying the probability of occurrence and return period of extreme temperatures, and possible change in these parameters, is of high importance for climate-related policy making and preparedness works in the region. This study aims to address these issues by assessing probability of exceedance and return period of extremes in annual maximum and annual mean temperatures. The analyses of historical data in this study showed that extremes in both annual maximum and mean temperature are highly likely to be exceeded more often in the future compared to the past. For the extreme event marker (threshold) defined in this study, probability of 3 exceedances in the following 19 years (for instance), at any gridpoint, is estimated to be at least 10% for extremes in annual maxima and at least 15% for those in annual means. Most places in the region, however, have much higher (up to 20%) probability of exceedance. The estimated probability of exceedance has shown increasing tendency with time. Return period, based on the most recent data, of extremes in annual maximum temperature is found to be less than 6.5 years at about 48% of the gridpoints in the region. Similarly, return period of extremes in annual mean temperature is estimated to be less than 5.5 years at about 82% of places in the region. These estimates have also shown a strong tendency of getting shorter as time goes on. On average, extremes in annual mean temperature were found to have shorter return periods (4–7 years) compared to those in annual maximum temperature (6–10 years), at 95% confidence. The empirical results presented in this study are generally in agreement with IPCC’s projections of increased warming trend. This data-driven, robust method is used in the present study and the results can also be considered as an alternative approach for detecting changes in climate via estimating and assessing possible changes in frequency of extreme events with time.


2021 ◽  
Author(s):  
Graziano Coppa ◽  
Annarosa Quarello ◽  
Gert-Jan Steeneveld ◽  
Nebojsa Jandric ◽  
Andrea Merlone

<div> <p>With the purpose of revising World Meteorological Organization’s Commission for Instruments and Methods of Observation (WMO/CIMO) Guide #8 on weather stations siting, and in the framework of EMPIR project ENV58 MeteoMet 2, an experiment to evaluate metrologically the maximum influence of a paved road on 2-m air temperature measurements (“road siting effect”) has been designed, installed and run in Italy. It consists of a 100-m long array of seven measurement stations, at increasing distances from a local road, equipped with shielded Pt100 thermometers and ancillary sensors (hygrometers, anemometers, solar radiation meters). Data coming from 1 year of observations, has been analysed for daily climatological metrics, finding that the road mostly effects minimum temperatures, with average values of ~ 0.30±0.18 °C at a distance of 1 m; then, in order to quantify the instrumental effect on the measurement, data was filtered by applying a Generalized Additive Model, selecting only times when the effect is more intense (during nights, in presence of low winds coming from the road), and the road siting effect has been calculated by modelling the maximum temperature differences by using Extreme Values Analysis. The 1-year return value on 10-min measurements is 1.22±0.30 °C at 1 m from the road, with a gradual decline (~ 0.1 °C/m), while an extrapolation to 100-year return level gives a value of 1.71±0.79 °C. Analysis also show the possibility of calculating an asymptotic upper limit to these values, providing there are enough data to lower the associated uncertainties. These results, published in the International Journal of Climatology (Coppa et al 2021, https://doi.org/10.1002/joc.7044) is a first step towards a redefinition of the weather station classification scheme of WMO/CIMO Guide #8, together with building and tree effects experiments which have been run in parallel with the road siting experiment here presented and which will be presented elsewhere. Raw data is also available at Zenodo.org (Coppa et al 2020, https://doi.org/10.5281/ZENODO.4300299)</p> </div>


Sign in / Sign up

Export Citation Format

Share Document