scholarly journals Determination of alfalfa leaf area by non-destructive method

2011 ◽  
Vol 1 (1-4) ◽  
Author(s):  
Silvano Bianco ◽  
Leonardo Bianco de Carvalho ◽  
Matheus Saraiva Bianco
FLORESTA ◽  
2019 ◽  
Vol 50 (1) ◽  
pp. 1063
Author(s):  
João Everthon da Silva Ribeiro ◽  
Francisco Romário Andrade Figueiredo ◽  
Ester Dos Santos Coêlho ◽  
Walter Esfrain Pereira ◽  
Manoel Bandeira de Albuquerque

The determination of leaf area is of fundamental importance in studies involving ecological and ecophysiological aspects of forest species. The objective of this research was to adjust an equation to determine the leaf area of Ceiba glaziovii as a function of linear measurements of leaves. Six hundred healthy leaf limbs were collected in different matrices, with different shapes and sizes, in the Mata do Pau-Ferro State Park, Areia, Paraíba state, Northeast Brazil. The maximum length (L), maximum width (W), product between length and width (L.W), and leaf area of the leaf limbs were calculated. The regression models used to construct equations were: linear, linear without intercept, quadratic, cubic, power and exponential. The criteria for choosing the best equation were based on the coefficient of determination (R²), Akaike information criterion (AIC), root mean square error (RMSE), Willmott concordance index (d) and BIAS index. All the proposed equations satisfactorily estimate the leaf area of C. glaziovii, due to their high determination coefficients (R² ≥ 0.851). The linear model without intercept, using the product between length and width (L.W), presented the best criteria to estimate the leaf area of the species, using the equation 0.4549*LW.


2020 ◽  
Vol 13 (3) ◽  
pp. 24
Author(s):  
M. L. V. Passos ◽  
J. B. C. Souza ◽  
E. A. Silva ◽  
C. A. A. C. Silva ◽  
W. S. Sousa ◽  
...  

Digital image processing, when applied to the study of leaf area, allows the integration of the direct measurement and non-destructive, and thus preserves the integrity of the plant. The objective was the quantification of the leaf area of soybean, cv. FTS Paragominas RR, submitted to different treatments of seed with the use of the computer program ImageJ, and basic presuppositions of image processing. The experiment was conducted at the Center of Agrarian Sciences and Environmental, Federal University of Maranhão, in Chapadinha (MA), in the period from February to June 2018. The seeds of soybean 'Paragominas RR' were submitted to the technique of seed treatment, consisting of three fungicides of the active ingredients, thiophanate methyl + fluazinam, fludioxonil and carbendazim + tiram, an insecticide active ingredient fipronil and the control. The leaf area was analyzed in the growth phase, through the use of digital camera and ImageJ®. The use of the routines in the computer program ImageJ® were effective for the determination of leaf area of the soybean submitted to different treatments of the seed. The thiophanate methyl + fluazinam in the dose 200 mL per 100 kg of seeds showed beneficial effects on growth of the cv. FTS Paragominas RR, as estimated by the leaf area.


2020 ◽  
Vol 36 (5) ◽  
Author(s):  
Felipe Augusto Reis Gonçalves ◽  
Marcelo de Paula Senoski ◽  
Thiago Picinatti Raposo ◽  
Leonardo Angelo de Aquino ◽  
Maria Elisa de Sena Fernandes

Growth measurements such as leaf area (LA) and dry matter (DM) are important in experiments about plants population, fertilization, irrigation and others parameters of cultivation, in garlic crop. The LA and DM are commonly defined as destructive, lengthy and cause loss of plants in the experimental units. The objective of this study was to fit mathematical models using linear models that estimate the leaf area and dry matter of garlic plants - variety Ito. For that, garlic plants were collected at 30, 45, 60, 75, 90, 115 and 120 days after planting. The measurements of width (W), length (L) of leaves, LA, DM, pseudostem diameter (PD), number of leaves per plant (NL) and height (H) were determined in each time. The models were fitted to estimate the LA or DM as function of the variables W, L, L*W, PD and LA. The statistical analysis of the linear regression, coefficient of determination of the linear regression (R2), root mean square error (RMSE), modified concordance index (d1) and the BIAS index were verified to determine the most representative models. It`s possible to estimate the LA and the leaf DM of garlic plants using the variables: length, width, pseudostem diameter and height of plants.


1997 ◽  
Vol 72 (2) ◽  
pp. 255-262 ◽  
Author(s):  
E. Nyakwende ◽  
C. J. Paull ◽  
J. G. Atherton

Author(s):  
Jéssica Sayuri Hassuda Santos ◽  
Karina Tiemi Hassuda dos Santos ◽  
Vinicius de Souza Oliveira ◽  
Gleyce Pereira Santos ◽  
Luis Fernando Tavares de Menezes ◽  
...  

Besides its medicinal and ornamental use, Tabebuia impetiginosa is also very economically important. The achievement of accurate and easy-to-perform tools to determine its leaf area is fundamental for understanding the interaction between the plant and the environment. The objective of this work was to obtain regression equations by using several models that use allometric measurements of the fifth leaflet and to select the most accurate one to determine the leaf area of composite leaves of Tabebuia impetiginosa Mart. in a non-destructive way. By using the dimensions of the fifth leaflet such as - length (LFL in cm), maximum width (WFL in cm) and the product between LFL and WFL (LWFL) of leaf limb, the equations were estimated for linear, quadratic, potential and exponential linear models. The results showed that the determination of leaf area could be performed with excellent precision for leaves of different sizes of this species, using the product of the measurements of length and width of the fifth leaflet. The equation that best expresses the leaf area estimate of the composite leaf of Tabebuia impetiginosa is ELACL = 8.7772 + 2.3840 (LWFL).


1983 ◽  
Vol 27 ◽  
Author(s):  
L. Salamanca-Riba ◽  
B.S. Elman ◽  
M.S. Dresselhaus ◽  
T. Venkatesan

ABSTRACTRutherford backscattering spectrometry (RBS) is used to characterize the stoichiometry of graphite intercalation compounds (GIC). Specific application is made to several stages of different donor and acceptor compounds and to commensurate and incommensurate intercalants. A deviation from the theoretical stoichiometry is measured for most of the compounds using this non-destructive method. Within experimental error, the RBS results agree with those obtained from analysis of the (00ℓ) x-ray diffractograms and weight uptake measurements on the same samples.


Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


Sign in / Sign up

Export Citation Format

Share Document