scholarly journals Modelo Semi-Empírico Médio Longitudinal de Ventos Termosféricos a 250 km para Períodos de Baixa Atividade Solar e Geomagnética

2020 ◽  
Vol 13 (4) ◽  
pp. 1442
Author(s):  
Wivaldo Dantas de Asevedo Júnior ◽  
Christiano Garnett Marques Brum ◽  
José Henrique Fernandez ◽  
Anderson Guimarães Guedes

Neste trabalho é apresentado um modelo semi-empírico de ventos neutros termosféricos médios longitudinais para períodos de baixas atividades solar e geomagnética com dependência em hora local, dia do ano e latitude geográfica para 250 km de altitude. O modelo é denominado de SEATWIM (sigla em inglês para Semi Empirical Averaged Termospheric Wind Model) válido para períodos de baixa atividade solar e geomagnética. O SEATWIM foi construído a partir de uma análise estatística dos dados observados in situ obtidos pelo satélite UARS (Upper Atmosphere Research Satllite) por meio da carga útil WINDII (Wind Imaging Interferometer), onde os valores representativos para 250 km são obtidos pela média integrada em altitude entre 205 km e 275 km, e, a partir de uma análise estatístico-espectral, foi extraído comportamento diário e sazonal distribuídos em latitude geográfica. O modelo proposto exibe uma boa concordância em relação à climatologia dos dados observados pelo satélite para as componentes zonal e meridional dos ventos neutros termosférico em distintos períodos. Quando comparado ao comportamento dos dados observados, os índices estatísticos exibiram bons resultados, sendo os melhores resultados obtidos nos períodos de equinócio em ambas as componentes do vento termosférico. A validação estatística também exibiu melhores resultados para a componente zonal em comparação a componente meridional, para todos os períodos do ano. Os testes estatísticos utilizados indicam que o modelo SEATWIM assemelha-se ao modelo HWM14 (Horizontal Wind Model, versão 2014) principalmente em relação a componente zonal. Semi Empirical Longitudinal Averaged Termospheric Wind Model at 250 km for Solar and Geomagnectic Activities Quiet Time A B S T R A C TThis paper presents a semi empirical model of averaged longitudinal thermospheric neutral wind for quiet time periods of solar and geomagnetic activities with dependence on local time, day of the year and geographical latitude for 250 km of altitude, which was called SEATWIM (Semi Empirical Averaged Thermospheric Winds Model, the letter Q means quiet time of solar and magnectic activities). The SEATWIM was constructed from a statistical analysis of the observed in situ data obtained by the UARS satellite (Upper Atmosphere Research Satllite) through the WINDII payload equipment, where the representative values for 250 km are obtained by the average value integrated in altitude between 205 km and 275 km, and, from a statistical and spectral analysis, we extracted daily and seasonal behavior distributed over geographic latitude. The proposed model shows a good agreement with the climatology of the data observed by the satellite for the thermospheric neutral wind zonal and meridional directions. The statistical indices showed good results when compared to the behavior of the observed data being the best results obtained in the equinox periods in both thermospheric wind directions. Statistical validation also showed better results for the zonal component in comparison with the meridional component for all periods of the year. Statistical tests also indicate that the SEATWIM is similar to the HWM14 (Horizontal Wind Model, version 2014), mainly in the zonal direction.key-words: Computational simulation, termospheric neutral wind, SEATWIM

2015 ◽  
Vol 2 (7) ◽  
pp. 301-319 ◽  
Author(s):  
Douglas P. Drob ◽  
John T. Emmert ◽  
John W. Meriwether ◽  
Jonathan J. Makela ◽  
Eelco Doornbos ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


1992 ◽  
Vol 40 (4) ◽  
pp. 556-557 ◽  
Author(s):  
A.E. Hedin
Keyword(s):  

Author(s):  
Iannis Dandouras ◽  
Philippe Garnier ◽  
Donald G Mitchell ◽  
Edmond C Roelof ◽  
Pontus C Brandt ◽  
...  

Titan's nitrogen-rich atmosphere is directly bombarded by energetic ions, due to its lack of a significant intrinsic magnetic field. Singly charged energetic ions from Saturn's magnetosphere undergo charge-exchange collisions with neutral atoms in Titan's upper atmosphere, or exosphere, being transformed into energetic neutral atoms (ENAs). The ion and neutral camera, one of the three sensors that comprise the magnetosphere imaging instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images these ENAs like photons, and measures their fluxes and energies. These remote-sensing measurements, combined with the in situ measurements performed in the upper thermosphere and in the exosphere by the ion and neutral mass spectrometer instrument, provide a powerful diagnostic of Titan's exosphere and its interaction with the Kronian magnetosphere. These observations are analysed and some of the exospheric features they reveal are modelled.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Rodrigo Cerqueira Rogerio

RESUMO: Apresenta-se neste trabalho a solução adotada para execução das fundações do Parque de Usina Eólica localizado no Ceará, com a utilização das estacas injetadas autoperfurantes, executadas em presença de solos arenosos. No qual consiste em perfurar o solo com altíssima velocidade por rotação e “pull down”, através da injeção simultânea de nata de cimento com medias pressões. Ocasionando na estaca um diâmetro final que pode obter o dobro do bit de perfuração, de acordo com o tipo de solo, gerado pelo efeito do jato da nata de cimento. Detalhando os processos executivos, verificando os aspectos técnicos e operacionais, para melhor compreender as características estruturais deste elemento. De forma a verificar “in situ” o desempenho deste novo tipo de fundação profunda, foram realizadas provas de carga, em estacas com diferentes diâmetros e comprimentos, realizadas em perfis estratigráficos de solos arenosos, para melhor avaliação de sua capacidade de carga. Analisando-se os ensaios das provas de carga interpretados a base da extrapolação da curva carga versus recalque e das previsões da capacidade de carga, obtidas por meio dos métodos semi-empíricos de correlação com ensaios de penetração (SPT), avaliando os padrões de execução desta tipologia de estaca injetada para comunidade geotécnica. ABSTRACT: This paper aims to establish the selected solution to except the foundations of the Wind Energy Park in Ceará (Brazil), with an executive methodology of the self-drilling injection piles framed in loco in Sandy soil. In which the soil drilling is done with the highest speed by rotation and pull down, through the simultaneous injection of grouting with medium pressures. This kind of drilling causes in the pile a final diameter that can get the double bore bit, according to the type of soil, done by the grouting blast. The executive processes are detailed as a whole, and also presenting the pile materials composition, in order to understand the structural characteristics of this element. To verify the performance of this new kind of deep drilling, instrumentations were done: settlement control and load tests in constructions with different structural characteristics, in self-drilling injected piles with different diameters and length, done in stratigraphical sandy, for a better evaluation of its load capacity. Analyzing the essays of load tests interpreted in the basis of curve extrapolation load versus settlement and the previsions of the load capacity, obtained by semi-empirical methods correlating with the penetrations methods (SPT), offering information to the geotechnical community.


2012 ◽  
Vol 74 ◽  
pp. 81-86 ◽  
Author(s):  
G. Manju ◽  
R. Sridharan ◽  
P. Sreelatha ◽  
Sudha Ravindran ◽  
M.K. Madhav Haridas ◽  
...  

2018 ◽  
Vol 18 (10) ◽  
pp. 7001-7017 ◽  
Author(s):  
Andrés Esteban Bedoya-Velásquez ◽  
Francisco Navas-Guzmán ◽  
María José Granados-Muñoz ◽  
Gloria Titos ◽  
Roberto Román ◽  
...  

Abstract. This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (r) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (γ) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on γ measured with remote sensing (γ532=0.48±0.01 and γ355=0.40±0.01) with respect to the values calculated using Mie theory (γ532=0.53±0.02 and γ355=0.45±0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.


2021 ◽  
Author(s):  
Angelo De Santis ◽  
Saioa A. Campuzano ◽  
Gianfranco Cianchini ◽  
Domenico Di Mauro ◽  
Dedalo Marchetti ◽  
...  

<p>In-situ magnetic field and electron density, as observed by Swarm and CSES satellites, are analyzed to identify possible anomalies in geomagnetic quiet time with respect to the ionospheric background. To avoid detecting possible anomalies induced by auroral activity we investigate regions between +50 and -50 degrees in magnetic latitude. Then a superposed epoch and space approach is applied to this anomaly dataset with respect to their time and space distance from shallow M5.5+ earthquakes occurred in about last 6 years. A comparison with analogous homogeneous random distribution of anomalies shows that the real anomaly concentrations found before the occurrence of earthquakes are statistically significant. In addition, we find that, in general, the anticipation times of the ionospheric precursors scale with the earthquake magnitude, confirming the validity of the Rikitake law for ionospheric signals, previously valid for ground precursors. We also find that the anomaly duration seems to depend on the magnitude of the impending earthquake. Finally, we propose a simple scheme of potential earthquake forecast on the base of the previously mentioned characteristics.</p>


2020 ◽  
pp. 1-12
Author(s):  
Noah T. Thompson ◽  
Phillip R. Whitworth ◽  
Konstantin I. Matveev

Unmanned boats have gained a lot of interest in the maritime community during the last decade. Most hydrodynamic platforms employed for unmanned boats are based on traditional relatively simple hulls. In the present study, small-scale hydrofoil-assisted unmanned boats (0.6–0.7 m in length and 3.5–5.5 kg in mass) have been developed and tested. Design calculations using a hydrodynamic transverse-strip engineering method with semi-empirical correlations were applied to determine suitable dimensions for hydrofoil systems. The boat hulls and hydrofoils were fabricated by laying up carbon-fiber cloth sheets on foam cores or 3-D printed profiles. The boats were instrumented with outboard propulsors and electronic equipment for operations in both remote control and autopilot modes. In addition, an in-situ thrust-measuring module was designed and installed at the hull sterns to gather thrust data at GPS-measured speeds in the range between 0 and 11 m/s. The developed boats proved to be robust platforms capable of going over 600 m distances at high speeds while autonomously following preset paths. The presented methods and results can assist engineers developing unmanned surface vehicles that utilize advanced hydrodynamic concepts.


2020 ◽  
Author(s):  
Emilie Royer ◽  
Marielle Cooper ◽  
Joseph Ajello ◽  
Larry Esposito ◽  
Frank Crary

<p>The Cassini spacecraft observed Titan’s upper atmosphere and its airglow emissions from 2005 to 2017. It is now established that the solar XUV radiation is the main source of dayglow, while magnetospheric particle precipitation principally acts on the nightside of the satellite. Nevertheless, one of the questions remaining unanswered after the end of the Cassini mission concerns the role and quantification of the magnetospheric particle precipitation and other minor sources such as micrometeorite precipitation and cosmic galactic ray at Titan. We report here on enhancements observed in Ultraviolet (UV) observations of Titan airglow made with the Cassini-Ultraviolet Imaging Spectrograph (UVIS). Enhancements are correlated with magnetospheric changing conditions occurring while the spacecraft, and thus Titan, are known to have crossed Saturn’s magnetopause and have been exposed to the magnetosheath environment. The processing and interpretation of 13+ years of airglow observations at Titan allows now for global studies of the upper atmosphere as a function of the Saturn Local Time (SLT) and the solar cycle.</p><p>Nitrogen airglow occur at about 1100 km of altitude in Titan’s upper atmosphere. Observations by the Cassini-UVIS instrument revealed the emission of the LBH band system, VK band system as well as Nitrogen atomic emission lines at 1085Å and 1493Å, as the prominent features of airglow emissions at Titan, as shown in Figures 1 and 2. Measurements were made at a wide range of solar incidence angles and Saturn Local Time (SLT), during the entire Cassini mission, allowing for the investigation of the upper atmosphere response to the magnetospheric environment and energetic particle precipitation. Additionally, observations were taken in a variety of solar condition, from solar maximum to minimum. UVIS observations of Titan around 12PM SLT (near Saturn’s magnetopause) present evidence of Titan’s upper atmosphere response to a fluctuating magnetospheric environment.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.9617eca672fe56938492951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=975f92d7d9d43faa47cacd77ad47438f&ct=x&pn=gnp.elif" alt=""></p><p><strong>Figure 1.</strong> Airglow intensity as a function of the saturn Local Time (SLT), for observation taken close the Saturn’s magnetopause (12PM SLT, labelled ‘12h’) and observations taken around miadnight SLT (labelled ‘24h’). Dayglow spectra exhibit higher averaged airglow intensity than Nightglow spectra.</p><p>We present here comparisons of the spectral emissions from the dayglow (Solar incidence angle <110°) and nightglow (Solar incidence angle ≥110°) between a rayheight of 900-1200 km around noon (±1 h) and around midnight (±1 h) SLT, during solar minima and maxima conditions (Fig. 2). Results show an enhancement of the airglow brightness with increasing particle precipitation, especially at SLT close to noon (i.e. close to the magnetopause), during solar maximum and minimum. Correlation between the ratio of the V-K, LBH, and NI-1493Å emission peaks are also presented.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.2357e48772fe52168492951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=2c6d843782e300fc27ec3db3de320caf&ct=x&pn=gnp.elif" alt=""></p><p><strong>Figure 2.</strong> Dayglow intensity as a function of the saturn Local Time (SLT) and solar cycle. Observations have been dispatched in four groups as a function of Titan’s orbital position within Saturn’s magnetosphere and maximum oe minimum stage of the solar cycle. Results suggest that solar maximum conditions around midgnight SLT favor the apparition of the brightest dayglow.</p><p>In the past decade, results from the Cassini-UVIS instrument greatly improved our understanding of airglow production at Titan. However, combining remote-sensing datasets, such as Cassini-UVIS data, with in-situ measurements taken by the Cassini Plasma Spectrometer (CAPS) instrument can provide us with a more rigorous assessment of the airglow contribution and correlations between data from simultaneous observations of in-situ Cassini instruments (CAPS, RPWS and MIMI) has been possible on few occasions. UVIS results present here will be put in context with results from in-situ simultaneous observations.</p><!-- COMO-HTML-CONTENT-END --> <p class="co_mto_htmlabstract-citationHeader"> <strong class="co_mto_htmlabstract-citationHeader-intro">How to cite:</strong> Royer, E., Cooper, M., Ajello, J., Esposito, L., and Crary, F.: Titan’s Ultraviolet Airglow Variability with Solar Cycle and Saturn Local Time, Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-415, 2020 </p>


Sign in / Sign up

Export Citation Format

Share Document