scholarly journals THE TASK OF CHOOSING A RELIABLE PATH FOR MESSAGE TRANSMISSION IN A COMPUTER NETWORK

Author(s):  
A. Yanko ◽  
I. Fil

The article provides a calculation and comparative analysis of the reliability and productivity of computer systems in a positional binary number system and in a non-positional number system in residual classes (residual number system – RNS), for calculations and comparative we consider practical task. The main goal is to solve the task of choosing a reliable path for message transmission in a computer network. Calculation and comparative evaluation of the reliability and performance of the computer system in the RNS and the existing in the positional binary number system computer system APO-221 of the product 15E1235 (automatic message switching center - ASC) when solving the basic task of the ASC – the task of choosing the transmission path of a formalized message (path selection algorithm (PSA))

Author(s):  
Cristina Klippel Dominicini ◽  
Magnos Martinello ◽  
Moisés Renato Nunes Ribeiro

Edge computing transfers processing power from large remote data centers (DCs) to distributed DCs at the edge of the network. This shift requires the ability to provide network functions virtualization (NFV) solutions that can efficiently manage and combine a large number of dynamic services in a resource-constrained DC. However, the routing mechanisms of traditional data center networks are not adequate for the dynamic composition of these services, because they are complex, rigid, subject to large delays in the propagation of control information, and limited by the size of switches' routing tables. In addition, traditional service function chaining (SFC) solutions in the service overlay are often decoupled from routing decisions in the network underlay, and restrict path selection options by traffic engineering. In this way, the NFV orchestrator cannot explore the full capacity of the network to provide composite services. To tackle these issues, this thesis investigated a programmable, expressive, scalable, and agile SFC proposal that allows dynamic and efficient orchestration of the network infrastructure of edge DCs with commodity network equipment. The proposal exploits virtualization and programmability technologies of DC networks, server-centric DCs, fabric networks, and a source routing mechanism based on the residue number system (RNS). As proof-of-concept, we developed prototypes with production DC technologies, such as OpenFlow, OpenStack, Open vSwitch and P4. The results of functional and performance tests showed that the proposed SFC scheme provides mechanisms to the NFV orchestrator that allow traffic engineering to make optimized decisions in the selection of network paths. This thesis also paves the way for exploring RNS-based source routing properties in SFC schemes, which can provide features such as fast failure reaction and forwarding without packet rewrite. In a broader analysis, the student published 22 papers in journals and conferences, contributed to funding initiatives, worked on international and national research projects, supervised undergraduate students, and leaded initiatives with innovation impacts.


2020 ◽  
Vol 1 (9) ◽  
pp. 28-30
Author(s):  
D. M. Zlatopolski

The article describes a number of little-known methods for translating natural numbers from one number system to another. The first is a method for converting large numbers from the decimal system to the binary system, based on multiple divisions of a given number and all intermediate quotients by 64 (or another number equal to 2n ), followed by writing the last quotient and the resulting remainders in binary form. Then two methods of mutual translation of decimal and binary numbers are described, based on the so-called «Horner scheme». An optimal variant of converting numbers into the binary number system by the method of division by 2 is also given. In conclusion, a fragment of a manuscript from the beginning of the late 16th — early 17th centuries is published with translation into the binary system by the method of highlighting the maximum degree of number 2. Assignments for independent work of students are offered.


2013 ◽  
Vol 427-429 ◽  
pp. 2094-2098
Author(s):  
Yang Li

According to the application of the computer network multimedia is more and more widely, and is also correspondingly strong shock by the network media and informatization for network communication and other requirements, progress and development of society constantly threatened by the impact of network multimedia communication. The paper theory-based with network multimedia communication to analysis the characteristics and performance requirements of network multimedia communication, combining to relevant material of the data flow, research and analyze the data flow of the mining technology, to carries on system analysis of the data flow, construct system model based on the network multimedia communication data stream, in order to better guide the dynamic analysis to network multimedia communication data flow, to master the multimedia communication data fusion and decision, so as to understand the users needs to network multimedia communication, to better guide the sustainable development of the network multimedia communication.


Author(s):  
Shifana Begum ◽  
Megha M Gamskar ◽  
Prakrithi Mogasale

MANET supports communication without any wired medium and with layered architecture. It does not uses any infrastructure support. Present alternative to the layered architecture is cross layer design approaches and the interaction between the layers is supported. The security of CLPC (Cross Layer Design Approach for Power control) routing protocol will be discussed in this paper. The transmission power and finding the effective route between source and destination can be improved by CLPC. The reliable path between the source and destination can be determined by RSS from the physical layer, but it is vulnerable to the DOS attacks. Here we propose a Secure cross layer power control protocol SCLPC to placate the attacks on CLPC. The SCLPC protocol provides better results and performance.


Author(s):  
Sudia Sai Santosh ◽  
Tandyala Sai Swaroop ◽  
Tangudu Kavya ◽  
Ramesh Chinthala

Author(s):  
Mário Pereira Vestias

IEEE-754 2008 has extended the standard with decimal floating point arithmetic. Human-centric applications, like financial and commercial, depend on decimal arithmetic since the results must match exactly those obtained by human calculations without being subject to errors caused by decimal to binary conversions. Decimal Multiplication is a fundamental operation utilized in many algorithms and it is referred in the standard IEEE-754 2008. Decimal multiplication has an inherent difficulty associated with the representation of decimal numbers using a binary number system. Both bit and digit carries, as well as invalid results, must be considered in decimal multiplication in order to produce the correct result. This article focuses on algorithms for hardware implementation of decimal multiplication. Both decimal fixed-point and floating-point multiplication are described, including iterative and parallel solutions.


Author(s):  
Mário Pereira Vestias

IEEE-754 2008 has extended the standard with decimal floating-point arithmetic. Human-centric applications, like financial and commercial, depend on decimal arithmetic since the results must match exactly those obtained by human calculations without being subject to errors caused by decimal to binary conversions. Decimal multiplication is a fundamental operation utilized in many algorithms, and it is referred in the standard IEEE-754 2008. Decimal multiplication has an inherent difficulty associated with the representation of decimal numbers using a binary number system. Both bit and digit carries, as well as invalid results, must be considered in decimal multiplication in order to produce the correct result. This chapter focuses on algorithms for hardware implementation of decimal multiplication. Both decimal fixed-point and floating-point multiplication are described, including iterative and parallel solutions.


Author(s):  
Sami J. Habib

This article presents a computer-aided integration tool, iCAD, that can predict a network evolution. We have used the term a network evolution to mean predicting changes within the physical network topology as time evolves. iCAD is connected to four device libraries, each of which contains a distinct set of network-technology devices, such as Ethernet hubs, ATM switches, IP routers, and gateways. As a network technology changes, each device library is updated. Then, we have plotted the cost and performance changes between the old and recent network technologies, enabling us to predict future changes to a first order. This article presents empirical results from 1999 until 2005 recording the network evolution progress, where the lower and upper bounds of network evolution came out to be 10% to 25% and 57% to 74% respectively in terms of network-design cost reduction.


2020 ◽  
Vol 1679 ◽  
pp. 032069
Author(s):  
V V Lyubimov ◽  
R V Melikdzhanyan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document