Effects of vegetation control and organic matter removal on soil water content in a young Douglas-fir plantation.

Author(s):  
Warren D. Devine ◽  
Constance A. Harrington
2013 ◽  
Vol 807-809 ◽  
pp. 843-847
Author(s):  
Xu Dong Zhao ◽  
De Gang Zhang ◽  
Li Na Shi ◽  
Yong Shun Yang

The depth variations of soil physicochemical properties in the degraded native grasslands and the artificially restored grasslands were studied in the Three-river headwater areas of Qinghai-Tibetan plateau, China. The results showed: (1) With the increase of the gradient of restoration years, soil water content, total chemical properties, total potassium, phosphorus, available phosphorus and potassium were increased thereafter in the artificial grasslands. (2) With the increase of grassland degradation gradient, soil water content was gradually reduced, and the total N, K, the organic matter didnt gradually reduced also. (3) Both restoration years and degradation degree didnt influence the nutrient distribution in soil. (4) The organic matter, total N and K of degraded grassland were increased by artificial grassland construction. Therefore, artificial grassland construction canbe used as an effective measure of ecological projects in the Three-river headwater area.


1990 ◽  
Vol 20 (9) ◽  
pp. 1490-1497 ◽  
Author(s):  
P. J. Smethurst ◽  
E. K. S. Nambiar

The effects of clear-felling and slash removal on the distribution of organic matter and nutrients, fluxes of mineral N, and soil water and temperature were studied in a 37-year-old Pinusradiata D. Don plantation, on a sandy Podzol in southeastern Australia. Slash, litter, and the top 30 cm of soil combined contained 1957 kg N•ha−1, of which slash and litter contained 12 and 25%, respectively. Therefore, loss of slash and litter due to burning or other intensive site preparation practices would substantially reduce the N capital at the site. During the first 18 months after clear-felling, soil water content in the clear-felled area was up to 50% higher than in the uncut plantation, but there were only minor differences in soil temperature. Slash removal decreased the water content of litter, but had little effect on the water content or temperature of the soil. In the uncut plantation, N mineralized in litter and soil was completely taken up by the trees. Following clear-felling, rates of N mineralization increased in litter after 4 months, and in soil after 12 months, but changes were less pronounced with slash removal. After clear-felling, increased mineralization and the absence of trees (no uptake) led to increased concentrations of mineral N in both litter and soil, 64–76% of which was leached below the 30 cm soil depth prior to replanting. Despite leaching, concentrations of mineral N after clear-felling remained higher than those in the uncut plantation for at least 3 years.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3441
Author(s):  
Jingyu Ji ◽  
Junzeng Xu ◽  
Yixin Xiao ◽  
Yajun Luan

The accurate monitoring of soil water content during the growth of crops is of great importance to improve agricultural water use efficiency. The Campbell model is one of the most widely used models for monitoring soil moisture content from soil thermal conductivities in farmland, which always needs to be calibrated due to the lack of adequate original data and the limitation of measurement methods. To precisely predict the water content of complex soils using the Campbell model, this model was evaluated by investigating several factors, including soil texture, bulk density and organic matter. The comparison of the R2 and the reduced Chi-Sqr values, which were calculated by Origin, was conducted to calibrate the Campbell model calculated. In addition, combining factors of parameters, a new parameter named m related to soil texture and the organic matter was firstly introduced and the original fitting parameter, E, was improved to an expression related to clay fraction and the organic matter content in the improved model. The soil data collected from both the laboratory and the previous literature were used to assess the revised model. The results show that most of the R2 values of the improved model are >0.95, and the reduced Chi-Sqr values are <0.01, which presents a better matching performance compared to the original. It is concluded that the improved model provides more accurate monitoring of soil water content for water irrigation management.


2020 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Johannes Lehmann

2020 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Ingrid Kogel-Knabner ◽  
Johannes Lehmann

&lt;p&gt;Organo-mineral interactions stabilize soil organic matter (SOM) by protecting from microbial enzymatic attack. Soil water content affects aggregation, mineral weathering, and microbial respiration, thus influencing the relative importance of SOM stabilization mechanisms. While the response of microbial respiration to momentary changes in water content is well established, it is unclear how microbial activity will impact stabilization mechanisms under different long-term moisture contents.&lt;/p&gt;&lt;p&gt;To understand how long-term soil moisture affects SOM stabilization mechanisms we studied fallow soils from upstate New York situated on a naturally occurring water content gradient. Wetter (but not saturated) soils contained more exchangeable Ca and had more strongly stabilized SOM, resulting in SOM accumulation. But it was not clear whether Ca-driven surface interactions or occlusion in micro-aggregates was more important, and if interactions with Fe and Al played a role in the Ca-poor soils. Also, the role of biotic drivers in SOM stabilization at different water contents was unknown.&lt;/p&gt;&lt;p&gt;We tested which mechanisms governed SOM stabilization by determining C and N contents and natural isotope abundances in particulate and mineral-associated organic matter fractions. We also extracted the C bound to Ca and to reactive Fe+Al phases. Wetter, Ca-rich soils had higher oPOM content, and in the heavy mineral fraction, higher relative concentrations of Ca-bound C, lower C:N values, and more oxidized C forms. In addition, wetter soils had greater microbial biomass. Together, these results showed that high long-term soil moisture increased microbial SOM cycling, and that processed SOM was better stabilized, in agreement with the recent notion that stable SOM consists of processed labile C. Additionally, higher soil moisture augmented the role of Ca in SOM stabilization over that of Al+Fe phases. We then manipulated the exchangeable Ca content and incubated soils with &lt;sup&gt;13&lt;/sup&gt;C&lt;sup&gt;15&lt;/sup&gt;N labeled plant litter. Ca-amended soils emitted less CO&lt;sub&gt;2 &lt;/sub&gt;while incubated with litter, confirming that Ca is instrumental in SOM stabilization. Tracing the labeled isotopes in the gaseous phase and soil fractions will allow us to gain a clearer understanding of how water content and soil Ca interact to stabilize SOM.&amp;#160;&amp;#160;&lt;/p&gt;


2005 ◽  
Vol 36 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Niels Henrik Jensen ◽  
Thomas Balstrøm ◽  
Henrik Breuning-Madsen

A database containing about 800 soil profiles located in a 7-km grid covering Denmark has been used to develop a set of regression equations of soil water content at pressure heads −1, −10, −100 and −1500 kPa versus particle size distribution, organic matter, CaCO3 and bulk density. One purpose was to elaborate equations based on soil parameters available in the Danish Soil Classification's texture database of particle size distribution and organic matter. It was also tested to see if inclusion of bulk density or CaCO3 content (in CaCO3-containing samples) as predictors or grouping in surface and subsurface horizons or textural classes improved the regression equations. Compared to existing Danish equations based on much fewer observations the accuracies of the new equations were better. The equations also predicted the soil water content at the measured pressure heads more accurately than the pedotransfer functions developed in HYPRES (Hydraulic Properties of European Soils). Introducing bulk density as a predictor improved the equation for the pressure head of −1 kPa but not for the lower ones. The grouping of data sets in surface and subsurface horizons or in textural classes did not improve the equations. Based on the equations a set of van Genuchten parameters for soil types in the Danish Soil Classification was elaborated. The prediction of soil water content, especially at pressure head −1 kPa, is more accurate using these van Genuchten parameters than using the pedotransfer functions developed in relation to the HYPRES database from a broad range of European soils.


Sign in / Sign up

Export Citation Format

Share Document