Tenderfoot Research Project: Fuel loading and postburn tree mortality data

Author(s):  
Lance S. Glasgow ◽  
Helen Y. Smith ◽  
Sharon M. Hood
2012 ◽  
Vol 27 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Alicia L. Reiner ◽  
Nicole M. Vaillant ◽  
Scott N. Dailey

Abstract The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree mortality data were gathered before and after treatments in a 25-year-old ponderosa pine (Pinus ponderosa C. Lawson) plantation. A random block design was used with three treatments plus a control at each of four blocks. Four plots were established as subsamples within each of the treatment and control sections of each block. Potential wildfire behavior for posttreatment fuel conditions was modeled for 90th and 97th percentile fire weather. Predicted rates of spread and flame lengths were higher for fuel conditions resulting from the mastication treatments than for the masticated/fire treatments or the controls. Torching and crowning indices indicated that higher windspeeds would be necessary to promote torching for areas treated with mastication/fire than for mastication or the controls. Tree mortality was 32 and 17% the first year after burning in masticated/fire and masticated/pull-back/fire plots, respectively, and 49 and 27% the second year. Our potential wildfire behavior results indicate that the risk of crown fire can be somewhat reduced by mastication and further reduced if mastication is followed up with prescribed fire to consume surface fuels. However, moderate levels of tree mortality seem inevitable when burning masticated fuels in a plantation and may only marginally be reduced by pulling fuels away from tree boles, which increases treatment costs.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Howard Williams ◽  
Sharon Hood ◽  
Christopher Keyes ◽  
Joel Egan ◽  
José Negrón

Mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) is an aggressive bark beetle that attacks numerous Pinus spp. and causes extensive mortality in lodgepole pine (Pinus contorta Douglas ex Loudon; LPP) forests in the western United States and Canada. We used pre-outbreak LPP attributes, cumulative MPB attack severity, and areal extent of mortality data to identify subwatershed-scale forest attributes associated with severe MPB-caused tree mortality that occurred across the Northern Rockies, USA from 1999–2014. We upscaled stand-level data to the subwatershed scale to allow identification of large LPP areas vulnerable to MPB. The highest mortality occurred in subwatersheds where LPP mean basal area was greater than 11.5 m2 ha−1 and LPP quadratic mean diameter was greater than or equal to 18 cm. A coarse assessment of federally-owned LPP-dominated forestland in the analysis area indicated about 42% could potentially be silviculturally treated. Silvicultural management may be a suitable option for many LPP forests, and our hazard model can be used to identify subwatersheds with LPP attributes associated with high susceptibility to MPB across landscape spatial scales. Identifying highly susceptible subwatersheds can help prioritize general areas for potential treatments, especially where spatially extensive areas of contiguous, highly susceptible LPP occur.


2004 ◽  
Vol 34 (5) ◽  
pp. 1025-1034 ◽  
Author(s):  
Thomas Ranius ◽  
Bengt Gunnar Jonsson ◽  
Nicholas Kruys

If equilibrium is assumed in unmanaged forests, the volume of coarse woody debris (CWD), VCWD, may be calculated from (i) the volume of living trees, Vliving, (ii) average volume of a dead stem in relation to when it was alive, k, (iii) tree mortality rate, m, and (iv) residence time of CWD, t, by the equation VCWD = Vlivingkmt. We parameterized this equation with data from Norway spruce (Picea abies (L.) Karst.) dominated forests in Fennoscandia. The Vliving was assumed to be directly proportional to forest productivity. Tree mortality data were from the National Forest Inventory, while it was difficult to find quantitative data on k and t. The predicted amounts (74–138 m3/ha, with larger amounts in the south) and size distribution (a negative exponential distribution of the number of stems) of CWD corresponded fairly well to averages from field inventories. By using a computer simulation program, the variability in tree mortality, density of living trees, and residence time of CWD were considered. In the simulations, the amount of CWD varied widely between 1-ha plots, especially for individual decay classes. Therefore, this model could be used to predict averages from larger landscapes unaffected by large disturbances, while no model can predict the amount of CWD at individual plots.


2005 ◽  
Vol 35 (12) ◽  
pp. 2981-2995 ◽  
Author(s):  
Crystal L Raymond ◽  
David L Peterson

We had the rare opportunity to quantify the relationship between fuels and fire severity using prefire surface and canopy fuel data and fire severity data after a wildfire. The study area is a mixed-evergreen forest of southwestern Oregon with a mixed-severity fire regime. Modeled fire behavior showed that thinning reduced canopy fuels, thereby decreasing the potential for crown fire spread. The potential for crown fire initiation remained fairly constant despite reductions in ladder fuels, because thinning increased surface fuels, which contributed to greater surface fire intensity. Thinning followed by underburning reduced canopy, ladder, and surface fuels, thereby decreasing surface fire intensity and crown fire potential. However, crown fire is not a prerequisite for high fire severity; damage to and mortality of overstory trees in the wildfire were extensive despite the absence of crown fire. Mortality was most severe in thinned treatments (80%–100%), moderate in untreated stands (53%–54%), and least severe in the thinned and underburned treatment (5%). Thinned treatments had higher fine-fuel loading and more extensive crown scorch, suggesting that greater consumption of fine fuels contributed to higher tree mortality. Fuel treatments intended to minimize tree mortality will be most effective if both ladder and surface fuels are treated.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 360
Author(s):  
Paul J. Chisholm ◽  
Camille S. Stevens-Rumann ◽  
Thomas Seth Davis

In temperate coniferous forests, biotic disturbances such as bark beetle outbreaks can result in widespread tree mortality. The characteristics of individual trees and stands, such as tree diameter and stand density, often influence the probability of tree mortality during a bark beetle outbreak. However, it is unclear if these relationships are mediated by climate. To test this, we assembled tree mortality data for over 3800 ponderosa pine trees from Forest Inventory and Analysis (FIA) plots measured before and after a mountain pine beetle outbreak in the Black Hills, South Dakota, USA. Logistic models were used to determine which tree, stand, and climate characteristics were associated with the probability of mortality. Interactions were tested between significant climate variables and significant tree/stand variables. Our analysis revealed that mortality rates were lower in trees with higher live crown ratios. Mortality rates rose in response to increasing tree diameter, stand basal area (both from ponderosa pine and non-ponderosa pine), and elevation. Below 1500 m, the mortality rate was ~1%, while above 1700 m, the rate increased to ~30%. However, the association between elevation and mortality risk was buffered by precipitation, such that relatively moist high-elevation stands experienced less mortality than relatively dry high-elevation stands. Tree diameter, crown ratio, and stand density affected tree mortality independent of precipitation. This study demonstrates that while stand characteristics affect tree susceptibility to bark beetles, these relationships may be mediated by climate. Thus, both site and stand level characteristics should be considered when implementing management treatments to reduce bark beetle susceptibility.


2019 ◽  
Vol 73 (2) ◽  
pp. 55-62 ◽  
Author(s):  
Jodi Axelson ◽  
John Battles ◽  
Beverly Bulaon ◽  
Danny Cluck ◽  
Stella Cousins ◽  
...  

2008 ◽  
Vol 38 (7) ◽  
pp. 2013-2029 ◽  
Author(s):  
S. T. Michaletz ◽  
E. A. Johnson

The mechanisms governing tree mortality in surface fires are poorly understood, owing in large part to the absence of a process-based framework for defining and evaluating these mechanisms. This paper begins the development of such a framework by deriving a first-order process model of tree mortality in surface fires (intensities less than approximately 2500 kW·m–1). A buoyant line-source plume model is used to drive heat transfer models of vascular cambium and vegetative bud necroses, which are linked to tree mortality using an allometrically-based sapwood area budget. Model predictions are illustrated for white spruce ( Picea glauca ), lodgepole pine ( Pinus contorta ), and trembling aspen ( Populus tremuloides ) and are compared with independent mortality data for Engelmann spruce ( Picea engelmannii Parry ex Engelm.) and Pinus contorta Dougl. Results help define first-order mortality mechanisms and suggest second-order mortality mechanisms that should be incorporated into future modeling efforts.


2020 ◽  
Vol 29 (9) ◽  
pp. 807
Author(s):  
Warren P. Reed ◽  
J. Morgan Varner ◽  
Eric E. Knapp ◽  
Jesse K. Kreye

Mechanical mastication is a fuels treatment that shreds midstorey trees and shrubs into a compacted woody fuel layer to abate fire hazards in fire-prone ecosystems. Increased surface fuel loading from mastication may, however, lead to undesirable fire intensity, long-duration flaming or smouldering, and undesirable residual tree mortality. Two major questions facing fuels managers are: how long do masticated fuels persist, and how does the composition of masticated fuelbeds change over time? To evaluate these changes, we measured 25 masticated sites with a range of vegetation, species masticated and time since treatment (1–16 years) in the western US. Seven of the 25 sites were sampled nearly a decade earlier, providing a unique opportunity to document fuelbed changes. Woody fuel loading ranged from 12.1 to 91.9Mg ha−1 across sites and was negatively related to time since treatment. At remeasured sites, woody fuel loads declined by 20%, with the greatest losses in 1- and 10-h woody fuels (69 and 33% reductions in mass respectively). Reductions were due to declines in number of particles and reduced specific gravity. Mastication treatments that generate greater proportions of smaller-diameter fuels may result in faster decomposition and potentially be more effective at mitigating fire hazard.


2004 ◽  
Vol 19 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Peter Z. Fulé ◽  
Jason L. Jerman ◽  
Peter J. Gould

Abstract Intensive thinning prescriptions intended to restore historic forest structure have produced heavy broadcast slash fuel loads in northwestern Arizona, sometimes leading to high tree mortality following prescribed burning. Mechanical slash compression with a D-6 bulldozer to reduce the severity of fire effects on residual trees was evaluated. Ten of 42 measured trees (24%) died within 2 years after burning of broadcast slash, and crown scorch of trees without slash compression treatment averaged 26%. In contrast, no trees died after burning of compressed slash and crown scorch averaged <3%, even though the total fuel loading was indistinguishable from the broadcast slash treatment. The practice of raking fuels away from the boles of old-growth trees also contributed to reduced scorch as compared to younger, unraked trees. Slash compression is a viable method of reducing mortality, offering ecological and economical tradeoffs. Benefits include the ability to reduce large quantities of slash, safeguarding old-growth tree survival while rapidly achieving open forest structure. Costs include paying for equipment operation as well as the possibility of damage to soils or plants. West. J. Appl. For. 19(3):149–153.


1988 ◽  
Vol 18 (10) ◽  
pp. 1291-1297 ◽  
Author(s):  
Kevin C. Ryan ◽  
Elizabeth D. Reinhardt

We used data on 2356 trees from 43 prescribed fires in Idaho, Montana, Oregon, and Washington states to model postfire tree mortality. Data were combined for seven species of conifers to develop binary logistic regression models for predicting the probability of mortality. Probability of mortality increased with percentage of the crown killed, and decreased as bark thickness increased. Models are presented with and without species as a categorical variable. The models predicted well for trees burned in both slash fires and fires in natural fuels. The models are applicable for assessing fire-caused mortality both of individual trees and in mixed conifer stands of the Pacific Northwest.


Sign in / Sign up

Export Citation Format

Share Document