Genomic instability of surgical sample and cancer-initiating cell lines from human glioblastoma

10.2741/3998 ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 1469 ◽  
Author(s):  
Arantxa Perez-Garcia
Tsitologiya ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
L. N. Kiseleva ◽  
◽  
A. V. Kartashev ◽  
N. L. Vartanyan ◽  
A. A. Pinevich ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6781
Author(s):  
Anna Kirstein ◽  
Daniela Schilling ◽  
Stephanie E. Combs ◽  
Thomas E. Schmid

Background: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. Methods: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. Results: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. Conclusion: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 230
Author(s):  
Barbara Costa ◽  
Michael N.C. Fletcher ◽  
Pavle Boskovic ◽  
Ekaterina L. Ivanova ◽  
Tanja Eisemann ◽  
...  

Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.


2008 ◽  
Vol 7 (3) ◽  
pp. 364-373 ◽  
Author(s):  
Cholpon S. Djuzenova ◽  
Teresa Güttler ◽  
Sabrina Berger ◽  
Astrid Katzer ◽  
Michael Flentje

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3077-3077
Author(s):  
Tobias Dittrich ◽  
Martin Schorb ◽  
Isabella Haberbosch ◽  
Elena Bausch ◽  
Mandy Börmel ◽  
...  

Introduction Genomic instability is the basic prerequisite for a Darwinian-type evolution of neoplasia and as such represents a fundamental hallmark of cancer. Centrosomal aberrations have been identified as potent drivers of genomic instability (Cosenza et al., Cell Reports 2017; Krämer et al., Leukemia 2003). The current standard to investigate centrosomal aberrations in cancer patients is immunofluorescence (IF) staining. Although this method is fast and easily scalable, its diagnostic significance is controversially discussed. Moreover, ultrastructural analysis of centrosomes in cancer patients is required to gain a mechanistical understanding of the relationship between genomic instability and centrosomal aberrations. To address this, we combined semi-automated analysis of immunofluorescence (IF) images with high-throughput electron tomography (ET) of different cell lines and subentities of primary plasma cell neoplasia, which serve as surrogate for clonal evolution. Methods CD138+ plasma cells were isolated from bone marrow aspirates of consenting patients with plasma cell neoplasia. Each sample was split to be subsequently processed for IF and ET. The IF workflow included (1) chemical fixation, (2) staining for nuclei, cells, centrin and pericentrin, (3) semi-automated acquisition of >1000 cells, (4) semi-automated analysis of IF data using the software Konstanz Information Miner (KNIME) (Berthold et al., GfKL 2007). The ET workflow included (1) chemical fixation (2) agarose embedding, (3) dehydration and epoxy resin embedding, (4) serial sectioning at 200 nm, (5) semi-automated screening for centrioles with transmission electron microscopy (TEM) (Schorb et al., Nature Methods 2019), (6) semi-automated acquisition of previously identified centriole regions with serial section ET. Results So far, four patients with relapsed refractory myeloma as well as two cell lines (U2OS-PLK4, RPMI.8226) have been screened with TEM. No centrosomal amplification was apparent by IF in any of these patients. Within 5598 cells, 205 centrosomes have been detected. A total of 659 electron tomograms were performed on 141 regions of interest that were distributed on average over five sections. One patient with highly refractory multiple myeloma (resistance to eight prior therapies) showed over-elongated and partially fragmented centrioles (Figure), similar to recently reported findings in tumor cell lines (Marteil et al., Nature Communications 2018). Six out of 10 mother centrioles in this patient were longer than 500 nm, which is supposed to be the physiological length. The dimensions (mean [range]) of mother (decorated with appendages) and daughter centrioles in this patient were: length 919 nm [406 nm - 2620 nm] and 422 nm [367 nm - 476 nm]; diameter 221 nm [99 nm - 470 nm] and 236 nm [178 nm - 450 nm]. Moreover, the mother centrioles showed multiple sets of appendages (mean [range]: 5.9 [2 - 13]), while one set of appendages would be physiological. This is an ongoing study and additional results are expected by the date of presentation. Conclusions We present a semi-automated methodological setup that combines high-throughput IF and cutting-edge ET to study centrosomal aberrations. To our knowledge, this is the first study that systematically analyzes the centrosomal phenotype of cancer patients at the ultrastructural level. Our preliminary IF results suggest that supernumerary centrosomes in plasma cell neoplasia might be less common than previously reported. Moreover, we for the first time describe and characterize over-elongated centrioles in myeloma patients, reminiscent of previous findings in tumor cell lines. With increasing numbers of patients, we will be also able to correlate results from IF and ET to address the current uncertainty with respect to IF screens for centrosomal aberrations. Better insight into centrosomal aberrations will likely increase our understanding on karyotype evolution in plasma cell neoplasia and possibly facilitate the development of novel targeted therapies. Figure Disclosures Goldschmidt: John-Hopkins University: Research Funding; John-Hopkins University: Research Funding; MSD: Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dietmar-Hopp-Stiftung: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Molecular Partners: Research Funding; Janssen: Consultancy, Research Funding; Mundipharma: Research Funding; Chugai: Honoraria, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Müller-Tidow:MSD: Membership on an entity's Board of Directors or advisory committees. Schönland:Medac: Other: Travel Grant; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Prothena: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Krämer:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Daiichi-Sankyo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4474-4474
Author(s):  
Subodh Kumar ◽  
Leutz Buon ◽  
Srikanth Talluri ◽  
Jialan Shi ◽  
Hervé Avet-Loiseau ◽  
...  

Abstract As in all cancers, genomic instability leads to ongoing acquisition of new genetic changes in multiple myeloma (MM). This adaptability underlies the development of drug resistance and progression in MM. This genomic instability is driven by cellular processes, mainly related with DNA repair and perturbed by functional changes in limited number of genes. Since kinases play a critical role in the regulation of biological processes, including DNA damage/repair signaling and are relatively easy to screen for inhibitors, we investigated for novel genes involved in the acquisition of new genomic changes in MM. Using a large genomic database which had both the gene expression and CGH array-based copy number information (gse26863, n=246), we first identified a total of 890 expressed kinases in MM and correlated their expression with genomic instability defined as a change in ≥3 and/or 5 consecutive amplification and/or deletion events. We identified 198 kinases whose elevated expression correlated with increased genomic instability (based on FDR ≤ 0.05). Amongst these kinases, using univariate Cox survival analysis, elevated expression of 15 kinases correlated with poor overall as well as event free survival (P ≤0.05) in two MM datasets (IFM70, n=170; gse24080; n=559). We further confirmed the correlation of these 15 genes in both EFS and OS in additional two MM datasets (MMRF CoMMpass Study, IFM-DFCI 2009) as well as in additional solid tumor datasets from TCGA from patients with lung and pancreatic adenocarcinoma (P values ranging from 0.01 to <0.000002). A pathway analysis identified phosphorylation and regulation of proteasome pathway, mitotic spindle assembly/checkpoint, chromosomal segregation and cell cycle checkpoints as among major pathways regulated by these genes. To investigate the relevance of these genes with genomic instability, we performed a functional siRNA screen to evaluate impact of their suppression on homologous recombination (HR). PDZ Binding Kinase (PBK) was one of the top genes whose knockdown caused the maximal inhibition of HR activity in initial screen. To investigate it further in detail, we suppressed PBK in MM cells using shRNA and confirmed that its suppression significantly reduces HR activity. PBK-knockdown also reduced gH2AX levels (marker of DNA breaks) measured by Western blotting and decreased number of micronuclei (a marker of ongoing genomic rearrangements and instability) as assessed by flow cytometry . A small molecule inhibitor of PBK also confirmed a similar reduction in gH2AX levels as well as micronuclei, indicating inhibition of spontaneous DNA breaks and genomic instability. Using mass spectrometry and co-immunoprecipitation, we identified that PBK interacts with FEN1, a nuclease with roles in base excision repair and HR pathways. We confirmed that PBK induces phosphorylation of FEN1 and that inhibition of PBK, suppressed the phosphorylation of FEN1, RAD51 expression and gH2AX levels and it reversed FEN1-induced HR activity. These results confirm that phosphorylation of FEN1 nuclease by PBK contributes to its ability to impact DNA breaks, HR and genome stability in MM. PBK inhibition also significantly sensitized MM cells to melphalan and inhibited cell viability in a panel of MM cell lines (IC50 in MM cell lines ~20-30 nM vs ~100 nM in normal PBMCs) at the same time also reversed melphalan-induced genomic instability, as assessed by micronucleus assay. These data identify PBK as an important target affecting genomic instability, and its inhibitor as a potential drug, to inhibit genomic evolution and MM cell growth. Disclosures Munshi: OncoPep: Other: Board of director.


Author(s):  
Adriana Brondani Da Rocha ◽  
Andrea Regner ◽  
Ivana Grivicich ◽  
Daniel Pretto Schunemann ◽  
Celito Diel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document