Introduction—Small-Scale Unmanned Aerial Systems for Environmental Remote Sensing

2011 ◽  
Vol 48 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Perry J. Hardin ◽  
Ryan R. Jensen
2021 ◽  
Vol 11 (22) ◽  
pp. 10608
Author(s):  
Johnathan Burgess ◽  
Timothy Runnels ◽  
Joshua Johnsen ◽  
Joshua Drake ◽  
Kurt Rouser

This article compares direct turbine throttle control and active turbine throttle control for a turboelectric system; the featured turboprop is rated for 7 kW of shaft output power. The powerplant is intended for applications in unmanned aerial systems and requires a control system to produce different amounts of power for varying mission legs. The most straightforward control scheme explored is direct turbine control, which is characterized by the pilot controlling the throttle of the turbine engine. In contrast, active control is characterized by the turbine reacting to the power demanded by the electric motors or battery recharge cycle. The transient response to electric loads of a small-scale turboelectric system is essential in identifying and characterizing such a system’s safe operational parameters. This paper directly compares the turbogenerator’s transient behavior to varying electric loads and categorizes its dynamic response. A proportional, integral, and derivative (PID) control algorithm was utilized as an active throttle controller through a microcontroller with battery power augmentation for the turboelectric system. This controller manages the turbine’s throttle reactions in response to any electric load when applied or altered. By comparing the system’s response with and without the controller, the authors provide a method to safely minimize the response time of the active throttle controller for use in the real-world environment of unmanned aircraft.


2014 ◽  
Vol 18 (2) ◽  
pp. 35-45 ◽  
Author(s):  
Michał T. Chiliński ◽  
Marek Ostrowski

Abstract Remote sensing from unmanned aerial systems (UAS) has been gaining popularity in the last few years. In the field of vegetation mapping, digital cameras converted to calculate vegetation index (DCVI) are one of the most popular sensors. This paper presents simulations using a radiative transfer model (libRadtran) of DCVI and NDVI results in an environment of possible UAS flight scenarios. The analysis of the results is focused on the comparison of atmosphere influence on both indices. The results revealed uncertainties in uncorrected DCVI measurements up to 25% at the altitude of 5 km, 5% at 1 km and around 1% at 0.15 km, which suggests that DCVI can be widely used on small UAS operating below 0.2 km.


2020 ◽  
Vol 32 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Sha Huang ◽  
Lina Tang ◽  
Joseph P. Hupy ◽  
Yang Wang ◽  
Guofan Shao

AbstractThe Normalized Difference Vegetation Index (NDVI), one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery, is now the most popular index used for vegetation assessment. This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band. Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite, aerial, and increasingly—Unmanned Aerial Systems (UAS). While studies have found that the NDVI is effective for expressing vegetation status and quantified vegetation attributes, its widespread use and popularity, especially in UAS applications, carry inherent risks of misuse with end users who received little to no remote sensing education. This article summarizes the progress of NDVI acquisition, highlights the areas of NDVI application, and addresses the critical problems and considerations in using NDVI. Detailed discussion mainly covers three aspects: atmospheric effect, saturation phenomenon, and sensor factors. The use of NDVI can be highly effective as long as its limitations and capabilities are understood. This consideration is particularly important to the UAS user community.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Astrid Lampert ◽  
Barbara Altstädter ◽  
Konrad Bärfuss ◽  
Lutz Bretschneider ◽  
Jesper Sandgaard ◽  
...  

Unmanned aerial systems (UAS) fill a gap in high-resolution observations of meteorological parameters on small scales in the atmospheric boundary layer (ABL). Especially in the remote polar areas, there is a strong need for such detailed observations with different research foci. In this study, three systems are presented which have been adapted to the particular needs for operating in harsh polar environments: The fixed-wing aircraft M 2 AV with a mass of 6 kg, the quadrocopter ALICE with a mass of 19 kg, and the fixed-wing aircraft ALADINA with a mass of almost 25 kg. For all three systems, their particular modifications for polar operations are documented, in particular the insulation and heating requirements for low temperatures. Each system has completed meteorological observations under challenging conditions, including take-off and landing on the ice surface, low temperatures (down to −28 ∘ C), icing, and, for the quadrocopter, under the impact of the rotor downwash. The influence on the measured parameters is addressed here in the form of numerical simulations and spectral data analysis. Furthermore, results from several case studies are discussed: With the M 2 AV, low-level flights above leads in Antarctic sea ice were performed to study the impact of areas of open water within ice surfaces on the ABL, and a comparison with simulations was performed. ALICE was used to study the small-scale structure and short-term variability of the ABL during a cruise of RV Polarstern to the 79 ∘ N glacier in Greenland. With ALADINA, aerosol measurements of different size classes were performed in Ny-Ålesund, Svalbard, in highly complex terrain. In particular, very small, freshly formed particles are difficult to monitor and require the active control of temperature inside the instruments. The main aim of the article is to demonstrate the potential of UAS for ABL studies in polar environments, and to provide practical advice for future research activities with similar systems.


2019 ◽  
Vol 37 (1) ◽  
pp. 137-157 ◽  
Author(s):  
Danylo Malyuta ◽  
Christian Brommer ◽  
Daniel Hentzen ◽  
Thomas Stastny ◽  
Roland Siegwart ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
pp. 58-67 ◽  
Author(s):  
Jan Rudolf Karl Lehmann ◽  
Keturah Zoe Smithson ◽  
Torsten Prinz

Remote sensing techniques have become an increasingly important tool for surveying archaeological sites. However, budgeting issues in archaeological research often limit the application of satellite or airborne imagery. Unmanned aerial systems (UAS) provide a flexible, quick, and more economical alternative to commonly used remote sensing techniques. In this study, the buried features of the archaeological site of the Kleinburlo monastery, near Münster, Germany, were identified using high-resolution color–infrared (CIR) images collected from a UAS platform. Based on these CIR images, a modified normalised difference vegetation index (NDVIblue) was calculated, showing reflectance spectra of vegetation anomalies caused by water stress. In the presented study, the vegetation growing on top of the buried walls was better nourished than the surrounding plants because very wet conditions over the days previous to data collection caused higher levels of water stress in the surrounding water-drenched land. This difference in water stress was a good indicator for detecting archaeological remains.


2018 ◽  
Vol 10 (9) ◽  
pp. 1345 ◽  
Author(s):  
Kotaro Iizuka ◽  
Kazuo Watanabe ◽  
Tsuyoshi Kato ◽  
Niken Putri ◽  
Sisva Silsigia ◽  
...  

The high demand for unmanned aerial systems (UASs) reflects the notable impact that these systems have had on the remote sensing field in recent years. Such systems can be used to discover new findings and develop strategic plans in related scientific fields. In this work, a case study is performed to describe a novel approach that uses a UAS with two different sensors and assesses the possibility of monitoring peatland in a small area of a plantation forest in West Kalimantan, Indonesia. First, a multicopter drone with an onboard camera was used to collect aerial images of the study area. The structure from motion (SfM) method was implemented to generate a mosaic image. A digital surface model (DSM) and digital terrain model (DTM) were used to compute a canopy height model (CHM) and explore the vegetation height. Second, a multicopter drone combined with a thermal infrared camera (Zenmuse-XT) was utilized to collect both spatial and temporal thermal data from the study area. The temperature is an important factor that controls the oxidation of tropical peats by microorganisms, root respiration, the soil water content, and so forth. In turn, these processes can alter the greenhouse gas (GHG) flux in the area. Using principal component analysis (PCA), the thermal data were processed to visualize the thermal characteristics of the study site, and the PCA successfully extracted different feature areas. The trends in the thermal information clearly show the differences among land cover types, and the heating and cooling of the peat varies throughout the study area. This study shows the potential for using UAS thermal remote sensing to interpret the characteristics of thermal trends in peatland environments, and the proposed method can be used to guide strategical approaches for monitoring the peatlands in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document