Evaluating the effect of climate change on snow load on structures

Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>

2021 ◽  
Author(s):  
Nicole P.M. van Lipzig ◽  
Jonas Van de Walle ◽  
Wim Thiery ◽  
Matthias Demuzere ◽  
Grigory Nikulin ◽  
...  

&lt;p&gt;Extreme weather events, such as heavy precipitation, hail storms, heat waves, droughts and strong wind gusts have a detrimental impact on East African societies. The Lake Victoria Basin (LVB) is especially vulnerable, due to a large and growing population at risk from flooding. Moreover, nightly storms on the lake often catch fishermen by surprise. As the frequency and intensity of weather and climate extremes in the region is projected to further increase substantially with climate change, so do the risks. This has potentially major consequences for livelihoods and policy. The ultimate aim of the CORDEX Flagship Pilot Study ELVIC (Climate Extremes in the Lake Victoria Basin) is therefore to investigate how extreme weather events will evolve in the future in the LVB and to provide improved information to the impact community. ELVIC brings together different research groups that perform simulations with multiple high-resolution regional climate models operating at the convection-permitting scale (CPS) (https://ees.kuleuven.be/elvic). As a first step towards this overall goal, the added value of the CPS on the representation of deep convective systems in Equatorial Africa is assessed. For this purpose, 10-year present-day model simulations were carried out with five regional climate models at both parameterized and convection-permitting scales, namely COSMO-CLM, RegCM, AROME, WRF and MetUM .&amp;#160;&lt;/p&gt;&lt;p&gt;Similarly to other regions in the world, there is no unanimous improvement nor deterioration in the representation of the spatial distribution of total rainfall and the seasonal cycle when going to the CPS. Moreover, substantial biases in the multi-annual averages (up to 30 W m&lt;sup&gt;-2&lt;/sup&gt;) and seasonal cycle in Top-Of-Atmosphere (TOA) upward radiative fluxes remain, both in some models with parameterized and with explicitly resolved convection. Most substantial systematic improvements were found in the representation of the diurnal cycle in precipitation, the diurnal cycle in TOA radiation, some metrics for precipitation intensity and number of rain events. More specifically, the timing of the daily maximum in precipitation is systematically delayed when going to the CPS, thereby improving the agreement with observations. In particular, peaktime of precipitation strongly improves over land, especially at the shores of the lake, indicative of a better representation of the impact of the lake-land-mountain circulations on the convection at CPS. The underestimation in the 90&lt;sup&gt;th&lt;/sup&gt; rainfall quantile of three-hourly precipitation in the parameterized models is alleviated. For the 95&lt;sup&gt;th&lt;/sup&gt; and 99&lt;sup&gt;th&lt;/sup&gt; percentile of precipitation no clear improvement nor deterioration is found, which might be related to poor observational constraints on extreme precipitation. The large overestimation in the total number of rainy events is alleviated when going to the CPS. The diurnal range in the radiative fluxes at the TOA strongly improves when going to CPS, especially for the longwave. All this indicates that the representation of the convective systems is strongly improved when going to CPS, giving confidence that the models are a valuable tool for studying how extreme precipitation events evolve in the future in the LVB.&lt;/p&gt;


2020 ◽  
Author(s):  
Nicole van Lipzig ◽  
Jonas Van de Walle ◽  
Wim Thiery ◽  
Grigory Nikulin ◽  
Minchao Wu ◽  
...  

&lt;p&gt;Extreme weather events, like heavy precipitation, heat waves, droughts and wind storms have a detrimental impact on East African societies. The Lake Victoria Basin (LVB) is especially vulnerable, since nightly storms on the lake catch fishermen by surprise. As the frequency and intensity of climate extremes is projected to further increase substantially with climate change, so do the risks, with potentially major consequences for livelihoods and policy in the LVB.&lt;/p&gt;&lt;p&gt;The ultimate aim of the ELVIC CORDEX-FPS is to investigate how extreme weather events evolve in the future in the LVB and to provide improved probabilistic information to the impact community. ELVIC (Climate Extremes in the Lake Victoria Basin) brings together different research groups that perform simulations with multiple high-resolution regional climate models operating at the convection-permitting scale (CPS) (https://ees.kuleuven.be/elvic).&lt;/p&gt;&lt;p&gt;As a first step towards this overall goal, the added value of the CPS on the representation of deep convective systems in Equatorial Africa was assessed. For this purpose, 10-year present-day model simulations were carried out with five regional climate models both at the CPS and at the scale where convection was parameterized, namely COSMO-CLM, RegCM, HCLIM-AROME, WRF and the Met Office Unified Model. From a comparison of model output with different observational products, no robust improvement was found for seasonal average meteorological variables. Moreover, the change in the seasonal precipitation when going to CPS differs between the models. A robust improved performance was found for deep convection, reflected in an improved representation of the daily precipitation cycle. Preliminary results also point towards an improvement in the representation of extreme precipitation. This suggests that regional climate model simulations at the convection-permitting scale are indeed relevant to assess the climate sensitivity of extreme precipitation in the Lake Victoria Basin.&lt;/p&gt;


2021 ◽  
Author(s):  
Blanka Bartok

&lt;p&gt;As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.&lt;/p&gt;&lt;p&gt;The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).&lt;/p&gt;&lt;p&gt;Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.&lt;/p&gt;&lt;p&gt;The study also includes a case study determining the changes in solar power generation induced by the extreme situations.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


2019 ◽  
Vol 19 (5) ◽  
pp. 1087-1103 ◽  
Author(s):  
Alfredo Rodríguez ◽  
David Pérez-López ◽  
Enrique Sánchez ◽  
Ana Centeno ◽  
Iñigo Gómara ◽  
...  

Abstract. Growing trees are quite vulnerable to cold temperatures. To minimise the effect of these cold temperatures, they stop their growth over the coldest months of the year, a state called dormancy. In particular, endodormancy requires accumulating chilling temperatures to finish this sort of dormancy. The accumulation of cool temperatures according to specific rules is called chilling accumulation, and each tree species and variety has specific chilling requirements for correct plant development. Under global warming, it is expected that the fulfilment of the chilling requirements to break dormancy in fruit trees could be compromised. In this study, the impact of climate change on the chilling accumulation over peninsular Spain and the Balearic Islands was assessed. For this purpose, bias-adjusted results of 10 regional climate models (RCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 were used as inputs of four different models for calculating chilling accumulation, and the results for each model were individually compared for the 2021–2050 and 2071–2100 future periods under both RCPs. These results project a generalised reduction in chilling accumulation regardless of the RCP, future period or chilling calculation model used, with higher reductions for the 2071–2100 period and the RCP8.5 scenario. The projected winter chill decrease may threaten the viability of some tree crops and varieties in some areas where the crop is currently grown, but also shows scope for varieties with lower chilling requirements. The results are relevant for planning future tree plantations under climate change, supporting adaptation of spatial distribution of tree crops and varieties in Spain.


Author(s):  
Phub Zam ◽  
Sangam Shrestha ◽  
Aakanchya Budhathoki

Abstract Assessing the impacts of climate change on a transboundary river plays an important role in sustaining water security within as well as beyond the national boundaries. At times, the unilateral decision taken by one country can increase the risk of negative effect on the riparian countries and if the impact is felt strongly by the other country, it can lead to international tension between them. This study examines the impact of climate change on hydrology between a shared river which is Wangchu river in Bhutan and Raidak river in India. The river is mainly used to produce hydropower in the two largest hydropower plants on which the majority of Bhutan's economic development depends and is mainly used for agriculture in India. The Soil and Water Assessment Tool (SWAT) was used for future flow simulation. Future climate was projected for near future (NF) from 2025–2050 and far future (FF) from 2074–2099 using an ensemble of three regional climate models (ACCESS, CNRM-CM5 and MPI-ESM-LR) for two RCPs (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 scenario. The ensemble results indicated that, in future, the study area would become warmer with temperature increase of 1.5 °C under RCP 4.5 and 3.6 °C under RCP 8.5. However, as per RCP 4.5 and RCP 8.5, rainfall over the study area is projected to decrease by 1.90% and 1.38% respectively. As a consequence of the projected decrease in rainfall, the flow in river is projected to decrease by 5.77% under RCP 4.5 and 4.73% under RCP 8.5. Overall, the results indicated that the degree of hydrological change is expected to be higher, particularly for low flows in both Wangchu and Raidak River. Since transboundary water is a shared for economic growth, climate change adaptation and opportunities should also be considered by both the nations for better water management.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 170 ◽  
Author(s):  
Carlos Santos ◽  
Felizardo. Rocha ◽  
Tiago Ramos ◽  
Lincoln Alves ◽  
Marcos Mateus ◽  
...  

This study assessed the impact of climate change on the hydrological regime of the Paraguaçu river basin, northeastern Brazil. Hydrological impact simulations were conducted using the Soil and Water Assessment Tool (SWAT) for 2020–2040. Precipitation and surface air temperature projections from two Regional Climate Models (Eta-HadGEM2-ES and Eta-MIROC5) based on IPCC5—RCP 4.5 and 8.5 scenarios were used as inputs after first applying two bias correction methods (linear scaling—LS and distribution mapping—DM). The analysis of the impact of climate change on streamflow was done by comparing the maximum, average and reference (Q90) flows of the simulated and observed streamflow records. This study found that both methods were able to correct the climate projection bias, but the DM method showed larger distortion when applied to future scenarios. Climate projections from the Eta-HadGEM2-ES (LS) model showed significant reductions of mean monthly streamflow for all time periods under both RCP 4.5 and 8.5. The Eta-MIROC5 (LS) model showed a lower reduction of the simulated mean monthly streamflow under RCP 4.5 and a decrease of streamflow under RCP 8.5, similar to the Eta-HadGEM2-ES model results. The results of this study provide information for guiding future water resource management in the Paraguaçu River Basin and show that the bias correction algorithm also plays a significant role when assessing climate model estimates and their applicability to hydrological modelling.


2012 ◽  
Vol 9 (6) ◽  
pp. 7441-7474 ◽  
Author(s):  
J. A. Velázquez ◽  
J. Schmid ◽  
S. Ricard ◽  
M. J. Muerth ◽  
B. Gauvin St-Denis ◽  
...  

Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000) and a future (2041–2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.


Author(s):  
Andre Schardong ◽  
Slobodan P. Simonovic

Global Climate Models (GCMs) are currently the most powerful tools for accessing changes in the hydrological regime at the watershed scale due to climate change and variability. GCMs, however, have limitations due to their coarse spatial and temporal resolutions.  Regional Climate Models (RCMs) are often referred to as suitable alternatives due to their higher resolution of the long-term climate projections. It is expected that RCMs are better for simulating extreme conditions than the GCMs. This  present work, investigate the difference in updated IDF (Intensity-Duration-Frequency) relationships developed using GCMs and RCMs. The IDF updating method implemented with the IDF_CC tool for Canada has been used for comparison. The analyses are conducted using 369 selected Environment and Climate Change Canada hydro-meteorological stations from the IDF_CC tool database with record length longer than 20 years. Results for the future period (2020-2100), are based on multi-model ensembles of (i) the RCMs from the NA-CORDEX (North-American Coordinated Regional Climate Downscaling Experiment) project (ensemble 1) (ii) a sub-set of six GCMs from the GCMs available in the IDF_CC tool used as drivers for the RCMs (ensemble 2) and (iii) all 24 GCMs from the IDF_CC tool database (ensemble 3). One representative concentration pathway (RCP), RCP 8.5, is used in the analysis. The RCMs from the NA-CORDEX project selected for this study use six GCMs as drivers to produce the future predictions for the North American continent, including Canada. Two metrics are applied for the comparison of results: (i) the difference in projected precipitation using the multi-model ensemble median; and (ii) the difference in uncertainty range. The uncertainty range is defined in this study as the percentage projected change in future, 25 to 75 quantiles obtained using the RCMs a GCMs ensembles. The regional models from the NA-CORDEX project generated lower extreme precipitation projections than the GCMs for the stations located in the Canadian prairies (provinces of Alberta, Saskatchewan, Manitoba). Stations located at the East and West coasts of Canada show a smaller difference in the projected extremes obtained using GCMs and RCMs. The use of RCMs shows increase in uncertainty when compared to GCMs. This result indicates that even when using regional climate models, it’s advisable to extend the analyses and include as many as possible models from different climate centers.


Sign in / Sign up

Export Citation Format

Share Document