Intermeshing: A New Concept For Rapid Steel Erection

Author(s):  
Salam Al-Sabah ◽  
Debra Laefer ◽  
Linh Truong-Hong

<p>Three-dimensional intermeshing of steel enabled by advanced digital manufacturing holds the potential to radically change how steel bridges and buildings are connected. This paper presents the concept of the first universal structural steel connection in over 100 years. The proposed Intermeshed Steel Connection (ISC) exploits recent advances in steel cutting technologies and robotics to shape member ends precisely. This vastly reduces on-site bolting and welding. Forces are transferred through common bearing surfaces at multiple contact points. The new connection is designed to accelerate structural steel deployment and offer better disassembly options. This paper introduces the geometry, manufacturing, and initial analysis of the connection approach, which holds the potential to be robust, secure, scalable, and faster to erect.</p>

Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 37 ◽  
Author(s):  
Salam Al-Sabah ◽  
Debra F. Laefer ◽  
Linh Truong Hong ◽  
Minh Phuoc Huynh ◽  
Jia-Liang Le ◽  
...  

Digital manufacturing has transformed many industries but has had only a limited impact in the construction sector. To capitalize on advanced manufacturing techniques, this paper introduces a radically new connection approach for gravity structural steel frames. The proposed intermeshed steel connection (ISC) exploits robotic abilities to cut structural steel member ends precisely to accelerate deployment and offer better disassembly options over existing approaches. Forces are transferred through common bearing surfaces at multiple contact points, and connections can be secured by small locking pieces. This paper introduces the geometry, manufacturing, and initial analysis and test results of the connection. The paper demonstrates the ability of the connection to (1) be manufactured within current industrial tolerances, (2) be erected and disassembled, and (3) perform at expected design levels.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2021 ◽  
pp. 004051752098238
Author(s):  
Siyuan Li ◽  
Zhongde Shan ◽  
Dong Du ◽  
Li Zhan ◽  
Zhikun Li ◽  
...  

Three-dimensional composite preform is the main structure of fiber-reinforced composites. During the weaving process of large-sized three-dimensional composite preform, relative rotation or translation between the fiber feeder and guided array occurs before feeding. Besides, the weaving needles can be at different heights after moving out from the guided array. These problems are mostly detected and adjusted manually. To make the weaving process more precise and efficient, we propose machine vision-based methods which could realize accurate estimation and adjustment of the relative position-pose between the fiber feeder and guided array, and make the needles pressing process automatic by recognizing the position of the weaving needles. The results show that the estimation error of relative position-pose is within 5%, and the rate of unrecognized weaving needles is 2%. Our proposed methods improve the automation level of weaving, and are conducive to the development of preform forming toward digital manufacturing.


2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.


2020 ◽  
Author(s):  
Andhini N. Zurman-Nasution ◽  
Bharathram Ganapathisubramani ◽  
Gabriel D. Weymouth

The importance of the leading-edge sweep angle of propulsive surfaces used by unsteady swimming and flying animals has been an issue of debate for many years, spurring studies in biology, engineering, and robotics with mixed conclusions. In this work we provide results from an extensive set of three-dimensional simulations of finite foils undergoing tail-like (pitch-heave) and flipper-like (twist-roll) kinematics for a range of sweep angles while carefully controlling all other parameters. No significant change in force and power is observed for tail-like motions as the sweep angle increases, with a corresponding efficiency drop of only ≈ 2%. Similar findings are seen in flipper-like motion and the overall correlation coefficient between sweep angle and propulsive performance is 0.1-6.7%. This leads to a conclusion that fish tails or mammal flukes can have a large range of potential sweep angles without significant negative propulsive impact. A similar conclusion applies to flippers; although there is a slight benefit to avoid large sweep angles for flippers, this could be easily compensated by adjusting other hydrodynamics parameters such as flapping frequency, amplitude and maximum angle of attack to gain higher thrust and efficiency.


Author(s):  
V. Hariram ◽  
K. Venkatesh ◽  
M. Venkata Saidev ◽  
M. Surisetty Mahesh ◽  
M. Vinothkumar ◽  
...  

Simulating the vehicle collision has gained importance in the automotive sector due to its accuracy, cost effectiveness and enhanced reliability. It aids in improving the safety of driver and passenger and also examine the cause of crash or collision. This numerical analysis investigates the materials capability to enhance safety. A three-dimensional vehicle model was developed along with its roll cage using solid work tool. Hypermesh work bench was employed to discretise the sensitive parts of the body and roll cage using beam 189 element having six degree of freedom at each node. The existing structural steel members were replaced with reinforced carbon fibre in all the sensitive part of the body and roll cage and its structural stability was assessed using the frontal, side and roll over crash simulation using LS Dyna. This investigation also reveals the change in internal energy, kinetic energy absorption and momentum transfer for both structural steel and carbon fiber under all the crash scenarios. The outcomes of this numerical investigation proved that the reinforced carbon fiber can be effectively replaced with the structural steel to enhance safety.


1988 ◽  
Vol 25 (03) ◽  
pp. 229-236
Author(s):  
Michael J. Gunn ◽  
Ronald S. Hicks

Photogrammetry is the science of acquiring and interpreting three-dimensional data of physical objects by measuring and analyzing their images on photographic plates. The development of this technology since the mid-seventies has increased its credibility for application to industrial and shipbuilding use. Analytical photogrammetry is now routinely employed in shipbuilding for tasks as diverse as predicting the fit-up of structural steel assemblies prior to their joining, verifying the circularity of submarine hulls, and checking the alignment of catapult trough components on aircraft carriers. The authors address the practical applications of photogrammetric technology, and identify the reliability, versatility, and productivity of photogrammetric surveying when applied to shipbuilding.


1996 ◽  
Vol 118 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Xuefeng Tian ◽  
Bharat Bhushan

A new numerical method for the analysis of elastic and elastic-plastic contacts of two rough surfaces has been developed. The method is based on a variational principle in which the real area of contact and contact pressure distribution are those which minimize the total complementary potential energy. The present variational approach guarantees the uniqueness of the solution of the contact problem and significantly reduces the computation time as compared with the conventional matrix inversion method, and thus, makes it feasible to solve 3-D contact problem with large number of contact points. The model is extended to elastic-perfectly plastic contacts. The model is used to predict contact statistics for computer generated surfaces.


Sign in / Sign up

Export Citation Format

Share Document