Analytical Solutions for Flexural Stress of One-way UHPC-NC Hybrid Slab

Author(s):  
Zhao Liu ◽  
Wei D. Zhuo ◽  
Si Q. Yuan

<p>Ultra‐high performance concrete (UHPC) is an advanced construction material that affords opportunities to innovate the structures made of conventional concrete (NC). The one‐way UHPC‐NC hybrid slab, designed to have the UHPC layer in tension and the NC layer in compression, can be an optimal use of UHPC for bridge deck. The analytical solutions for normal stress are essential under service limit state, but they cannot be found in the literature by now. Based on the elastic theory, analytical formulas for the neutral axis position and flexural stress are derived. The lowest neutral axis position is attained when the UHPC layer thickness ratio (UHPC layer thickness / hybrid slab thickness) approximates 0.4. The criteria to judge the position of neutral axis within UHPC or NC region are analytically established. To find out the ideal scenario to reach the allowable compressive stress in NC and allowable tensile stress in UHPC simultaneously, an inequality constraint with the elastic modulus ratio is proposed. Considering the UHPC tensile stress limitation and flexural moment capacity of the hybrid slab, the rational thickness ratio of UHPC layer of 0.4 is suggested, which can achieve better economy and efficiency of the hybrid slab.</p>

PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Yifei Hao ◽  
Tianlin Li ◽  
Yu Yun ◽  
Xin Li ◽  
Xuegang Chen ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5294
Author(s):  
Bangyi Liu ◽  
Yang Zhou ◽  
Linhao Gu ◽  
Xiaoming Huang

Uneven support as result of voids beneath concrete slabs can lead to high tensile stresses at the corner of the slab and eventually cause many forms of damage, such as cracking or faulting. Three-dimensional (3D) finite element models of the concrete pavement with void are presented. Mesh convergence analysis was used to determine the element type and mesh size in the model. The accuracy of the model is verified by comparing with the calculation results of the code design standards in China. The reliability of the model is verified by field measurement. The analysis shows that the stresses are more affected at the corner of the slab than at the edge. Impact of void size and void depth at the slab corner on the slab stress are similar, which result in the change of the position of the maximum tensile stress. The maximum tensile stresses do not increase with the increase in the void size for relatively small void size. The maximum tensile stress increases rapidly with the enlargement in the void size when the size is ≥0.4 m. The increments of maximum tensile stress can reach 183.7% when the void size is 1.0 m. The increase in slab thickness can effectively reduce maximum tensile stress. A function is established to calculate the maximum tensile stress of the concrete slab. The function takes into account the void size, the slab thickness and the vehicle load. The reliability of the function was verified by comparing the error between the calculated and simulated results.


2018 ◽  
Vol 195 ◽  
pp. 02031 ◽  
Author(s):  
Shota Kiryu ◽  
Ay Lie Han ◽  
Ilham Nurhuda ◽  
Buntara S. Gan

Owing to continuously changing strength moduli properties, functionally graded concrete (FGC) has remarkable advantages over the traditional homogeneous concrete materials regarding cement optimization. Some researchers have studied mechanical behaviors and production methodologies. Problems arise as to how to incorporate the effects of the non-homogeneity of concrete strengths in the analysis for design. For a steel Reinforced Functionally Graded Concrete (RFGC) beam structure, the associated boundary conditions at both ends have to be at the neutral axis position after the occurrence of the presumed cracks. Because the neutral axis is no longer at the mid-plane of the beam crosssection, an iterative procedure has to be implemented. The procedure is somewhat complicated since the strength of the beam cross section has to be integrated due to the non-homogeneity in concrete strengths. This paper proposes an analytical procedure that is very straightforward and simple in concept, but accurate in designing the steel reinforced functionally graded concrete beam cross-sections.


2012 ◽  
Vol 25 (7) ◽  
pp. 2193-2198 ◽  
Author(s):  
P. Prieto ◽  
L. Marín ◽  
S. M. Diez ◽  
J.-G. Ramirez ◽  
M. E. Gómez

Author(s):  
Meng Ji ◽  
Ke Chen ◽  
Yunxiang You ◽  
Ruirui Zhang

Abstract Although ocean structures are complex, they all can be disassembled into a number of simple-shaped parts. One common shape is the slender body mentioned in this paper, and we focus on studying the mechanism of this shape. Experiments were carried out to study features of wave loads exerted by internal solitary waves (ISWs) on a submerged slender body. ISWs were generated by a piston-type wave maker in a large-type density stratified two-layer fluid wave flume. Using a three-component force transducer, the force variation of three degree of freedom (DOF) on the model was recorded. A satisfactory prediction method is established for ISWs on a submerged slender body based on internal solitary wave theory, Morison equation and pressure integral. Calculations based on this new prediction method are in good agreement with the experimental results. The experimental results and calculations show that, different incident angles, wave amplitude and layer thickness ratio have great effects on the wave loads, especially transverse incident waves bring much more severely influence. Besides the forces increase linearly with the wave amplitude becoming larger, and the maximums of the horizontal forces increase with the layer thickness ratio increasing.


Sign in / Sign up

Export Citation Format

Share Document