scholarly journals Analysis of steel reinforced functionally graded concrete beam cross sections

2018 ◽  
Vol 195 ◽  
pp. 02031 ◽  
Author(s):  
Shota Kiryu ◽  
Ay Lie Han ◽  
Ilham Nurhuda ◽  
Buntara S. Gan

Owing to continuously changing strength moduli properties, functionally graded concrete (FGC) has remarkable advantages over the traditional homogeneous concrete materials regarding cement optimization. Some researchers have studied mechanical behaviors and production methodologies. Problems arise as to how to incorporate the effects of the non-homogeneity of concrete strengths in the analysis for design. For a steel Reinforced Functionally Graded Concrete (RFGC) beam structure, the associated boundary conditions at both ends have to be at the neutral axis position after the occurrence of the presumed cracks. Because the neutral axis is no longer at the mid-plane of the beam crosssection, an iterative procedure has to be implemented. The procedure is somewhat complicated since the strength of the beam cross section has to be integrated due to the non-homogeneity in concrete strengths. This paper proposes an analytical procedure that is very straightforward and simple in concept, but accurate in designing the steel reinforced functionally graded concrete beam cross-sections.

2018 ◽  
Vol 149 ◽  
pp. 01094
Author(s):  
A. Chedad ◽  
N. Elmeiche

This paper presents a method for determining the interfacial stresses in an adhesive joint between a strengthening plate and a functionally graded beam. The beam is assumed to be isotropic with a constant poisson’s ratio. The present method is based on the deformation compatibility principle taking into account the neutral axis position of the FG beam. A power law for the distribution of the mechanical characteristic with a uniform and non-uniform porosity distribution is presented. A parametric study is presented to show the effect of some parameters on the distribution of stresses in the adhesive joint between the plat and the beam.


2007 ◽  
Vol 333 ◽  
pp. 227-230
Author(s):  
Valeria Cannillo ◽  
Luca Lusvarghi ◽  
Tiziano Manfredini ◽  
M. Montorsi ◽  
Cristina Siligardi ◽  
...  

The present work was focused on glass-alumina functionally graded materials. The samples, produced by plasma spraying, were built as multi-layered systems by depositing several layers of slightly different composition, since their alumina and glass content was progressively changed. After fabricating the graded materials, several, proper characterization techniques were set up to investigate the gradient in composition, microstructure and related performances. A particular attention was paid to the observation of the graded cross sections by scanning electron microscopy, which allowed to visualize directly the graded microstructural changes. The scanning electron microscopy (SEM) inspection was integrated with accurate mechanical measurements, such as systematic depth-sensing Vickers microindentation tests performed on the graded cross sections.


2021 ◽  
Vol 95 (3) ◽  
pp. 27-46
Author(s):  
VL.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.V. PROTCHENKO ◽  
◽  
...  

The moments in reinforced concrete during bending with torsion were determined, the new first hypothesis of linear deformations and its filling of the diagram during bending with torsion for the analytical second functional as a function of three functions - an exponent, a straight line and a parabola curve. A simple new method is found (from the family of mesh methods) and a summed function of additional deplanation is proposed. The new second hypothesis of angular deformations and its filling of the diagram in reinforced concrete during bending with torsion is constructed. The analytical first general undefined functional is a function of functions, as well as transitions, operations between functions. At the same time, a spatial triple integral of arguments from longitudinal deformations for the first hypothesis was obtained, as well as the third and fourth functionals (indefinite and definite) from moments (bending and twisting) with the projection of the coefficients of the diagram of "deformations - stresses" of compressed concrete and the filling coefficients of the diagrams of compressed concrete for their shoulders to the neutral axis for a field of small squares. The bending and torque moments from the compressed area of concrete and working reinforcement are determined (folded for their levels or expanded into algebraic functions from the synthesis of the computational model of reinforced concrete blocks). In this case, we have new functionals (from the first to the fourth functional), proposed hypotheses (first and second), as well as cross sections (from small squares) to a spatial crack. There are also jumps (cracks) lateral, normal, etc., from the first - third stage of average deformations of concrete and working reinforcement.


Author(s):  
Zhao Liu ◽  
Wei D. Zhuo ◽  
Si Q. Yuan

<p>Ultra‐high performance concrete (UHPC) is an advanced construction material that affords opportunities to innovate the structures made of conventional concrete (NC). The one‐way UHPC‐NC hybrid slab, designed to have the UHPC layer in tension and the NC layer in compression, can be an optimal use of UHPC for bridge deck. The analytical solutions for normal stress are essential under service limit state, but they cannot be found in the literature by now. Based on the elastic theory, analytical formulas for the neutral axis position and flexural stress are derived. The lowest neutral axis position is attained when the UHPC layer thickness ratio (UHPC layer thickness / hybrid slab thickness) approximates 0.4. The criteria to judge the position of neutral axis within UHPC or NC region are analytically established. To find out the ideal scenario to reach the allowable compressive stress in NC and allowable tensile stress in UHPC simultaneously, an inequality constraint with the elastic modulus ratio is proposed. Considering the UHPC tensile stress limitation and flexural moment capacity of the hybrid slab, the rational thickness ratio of UHPC layer of 0.4 is suggested, which can achieve better economy and efficiency of the hybrid slab.</p>


2019 ◽  
Vol 25 (1) ◽  
pp. 19
Author(s):  
Mufti Amir Sultan ◽  
Rudy Djamluddin

The construction of structures with reinforced concrete materials in coastal environments will face constraints in the form of chloride influences which can lead to a decrease in strength and even damage. One of the most popular reinforcement methods today is using a corrosion resistant Glass Fiber Reinforced Polymer (GFRP) material. This study was conducted to investigate the behavior of GFRP-S rectifying capacity in reinforced concrete beam reinforcement in 1, 3, 6, and 12 months. The test specimens consist of 10 reinforced beams with dimensions (15x20x330) cm that has been reinforced with GFRP-S in the bending area. Beams without immersion symbolized B0, immersion 1, 3, 6, and 12 months each given symbols B1, B3, B6 and B12. The test specimen is loaded statically until it fails. To record the data when testing is installed strain gauge and LVDT. From the result of the research, it can be seen that there is a decrease of GFRP-S rectification capacity in the test specimen after soaking in seawater. The value of the decrease in the capacity of the bonding can be predicted by using the equation


Sign in / Sign up

Export Citation Format

Share Document