scholarly journals Heavy Metal Contamination of the Loučka River Water Ecosystem

2007 ◽  
Vol 76 (1) ◽  
pp. 149-154 ◽  
Author(s):  
T. Vítek ◽  
P. Spurný ◽  
J. Mareš ◽  
A. Ziková

Heavy metal contamination of the Loučka River water ecosystem was assessed in July 2005. We analyzed concentrations of T-Hg (total mercury), Cd, Pb, Cr, Cu, Zn, and Ni in water, sediments, zoobenthos, and in the brown trout (Salmo trutta m. fario) muscle and liver tissues (a total of 28 individuals) at four sampling sites. The highest Pb and Ni concentrations (4.634-12.050 and 0.689-24.980 mg kg-1) were found in sediments. The zoobenthos was most contaminated by Zn and Cu (0.556-1.505 and 2.925-74.300 mg kg-1). The heavy metal contamination of river water was highest in Ni and Cr (0.1-6.8 and 0.5-10.0 mg l-1). Concentrations of heavy metals in the brown trout muscle were following (in mg kg-1): Pb 0.108 ± 0.073 - 1.010 ± 0.506, Cd 0.003 ± 0.002 - 0.026 ± 0.022, Zn 3.956 ± 0.371 - 5.801 ± 1.718, Ni 0.058 ± 0.018 - 0.102 ± 0.046, Cr 0.028 ± 0.005 - 0.073 ± 0.039, Cu 0.329 ± 0.079 - 0.437 ± 0.064 and Hg 0.065 ± 0.008 - 0.106 ± 0.047. Statistical differences (P < 0.05) in the brown trout muscle were in Pb and Zn. Cd, Cu and Zn were markedly accumulated in the brown trout liver (concentrations 0.107 ± 0.066 - 0.223 ± 0.078, 59.973 ± 38.951 - 145.800 ± 48.286 and 30.671 ± 3.574 - 34.274 ± 7.226 mg kg-1). Humans of 60 kg body mass may consume 1.5 kg of brown trout muscle from the Loučka River weekly without any risk. Adverse influence of the Uniglas distillery on the Loučka River environment contamination by heavy metals was not confirmed.

2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Tri Muji Susantoro ◽  
Ariani Andayani

<strong>Heavy Metal Contamination in the Coastal Area of Tanjung Selor North Kalimantan.</strong> The establishment of the North Kalimantan Province transformed the Tanjung Selor region and its surroundings into the provincial capital so that it will grow rapidly, both in terms of development and other activities. Monitoring environmental conditions, one of which is heavy metals in the waters need to be carried out as a starting environment before the area develops. This is important given the nature of heavy metals that change toxic at concentrations that exceed the threshold. The purpose of this study is to identify the potential for heavy metal contamination in the coastal area of Tanjung Selor, Bulungan Regency, North Kalimantan Province. Heavy metals studied is limiting to mercury (Hg), Chromium (Cr), Arsenic (As), Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). The location of the sampling was carried out using Landsat 8 imagery designed to represent the condition of the coastal area. Samples come from well water, river water, seawater, and marine sediments at 4, 9 and 5 observation stations respectively. Samples were taken on August 2014  using the grab sample method and analyzed for heavy metal content using the standard American Public Health Association (APHA) method with the Atomic Absorption Spectroscopy (AAS) instrument. Of the 23 samples produced, only 3 observation stations were not contaminated with heavy metals. While in the other 20 samples one of three types of heavy metals were found that exceeded the threshold. In general, Cu is the most detected metal exceeding the threshold in the study area found in samples of river water, sea water and sediment. Zn is found to exceed the threshold in well water. Pb is found to exceed the threshold in sample 5 of river water. Cd is found to exceed the threshold in samples of river water, sea water and sediment. The source of pollution is thought to originate from coal mining activities, oil palm plantations, and household waste. The overall results of this study show that river estuaries tend to accumulate heavy metals.


2015 ◽  
Vol 34 (1) ◽  
pp. 22784 ◽  
Author(s):  
Ali Jaffal ◽  
Stéphane Betoulle ◽  
Sylvie Biagianti-Risbourg ◽  
Alexandre Terreau ◽  
Wilfried Sanchez ◽  
...  

Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3348
Author(s):  
Min Tan ◽  
Kun Wang ◽  
Zhou Xu ◽  
Hanghe Li ◽  
Junfeng Qu

Heavy metals accumulate in high water table coal mining subsidence ponds, resulting in heavy metal enrichment and destruction of the ecological environment. In this study, subsidence ponds with different resource reutilization methods were used as study subjects, and non-remediated subsidence ponds were collectively used as the control region to analyze the heavy metal distributions in water bodies, sediment, and vegetation. The results revealed the arsenic content in the water bodies slightly exceeded Class III of China’s Environmental Quality Standards for Surface Water. The lead content in water inlet vegetation of the control region and the Anguo wetland severely exceeded limits. Pearson’s correlation, PCA, and HCA analysis results indicated that the heavy metals at the study site could be divided into two categories: Category 1 is the most prevalent in aquaculture pond B and mainly originate from aquaculture. Category 2 predominates in control region D and mainly originates from atmospheric deposition, coal mining, and leaching. In general, the degree of heavy metal contamination in the Anguo wetland, aquaculture pond, and fishery–solar hybrid project regions is lower than that in the control region. Therefore, these models should be considered during resource reutilization of subsidence ponds based on the actual conditions.


Author(s):  
Diana FLORESCU ◽  
Andreea IORDACHE ◽  
Claudia SANDRU ◽  
Elena HORJ ◽  
Roxana IONETE ◽  
...  

As a result of accidental spills or leaks, industrial wastes may enter in soil and in streams. Some of the contaminants may not be completely removed by treatment processes; therefore, they could become a problem for these sources. The use of synthetic products (e.g. pesticides, paints, batteries, industrial waste, and land application of industrial or domestic sludge) can result in heavy metal contamination of soils.


2020 ◽  
Vol 18 (1) ◽  
pp. 99-116
Author(s):  
JR Xavier ◽  
V Mythri ◽  
R Nagaraj ◽  
VCP Ramakrishna ◽  
PE Patki ◽  
...  

Vegetables are defined as edible plant parts generally consumed raw or cooked with a main dish, in a mixed dish, as an appetizer or as a salad. Food safety aspects related to microbial quality (total plate count, yeast and mold and food borne pathogens) and toxic residue (heavy metals) and mineral content were investigated for vegetables such as green leafy vegetable, salad vegetables, sprouts, brinjal, green chilies and French beans collected from organic and conventional outlets from Mysore region, Karnataka, India. Microbial analysis was carried out using standard procedures and mminerals (Ca, K, Fe, Cu, Mg, Mn and Zn) and heavy metals (Cd and Pb) were determined. Significant variations (p>0.05) were observed for microbial quality among organic and conventional vegetables. Mineral and vitamin C content were also significantly higher (p>0.01) in organic samples. Heavy metal contamination for lead and cadmium tested positive for conventional samples while organic samples tested negative. The variables that contributed most for the variability were heavy metal contamination, mineral and vitamin C content. Organically grown vegetables were free from heavy metals and safe for consumption, as well as they are rich in mineral and vitamin C content in comparison to conventional samples. SAARC J. Agri., 18(1): 99-116 (2020)


2017 ◽  
Vol 3 (01) ◽  
pp. 25-31 ◽  
Author(s):  
Charu Gangwar ◽  
Aprajita Singh ◽  
Raina Pal ◽  
Atul Kumar ◽  
Saloni Sharma ◽  
...  

E-waste is a popular name given to those electronic products nearing the end of their useful life which has become a major source of heavy metal contamination in soil and hence, became the global concern. Various samples of soil were collected from different sites and were determined for heavy metal analysis by the ICP-AAS after the digestion process. The main source of contamination is illegal e-waste recycling activities such as burning of PCB's acid baths etc. Different soil indices like contamination factor, I-geo, pollution load index, were calculated to determine the quality of the soil. Results indicate that e-waste recycling and industrial area are strongly contaminated by the heavy metals. Physiological analysis of soil revealed that e-waste processing and industrial activities decrease the soil pH and organic matter while enhancing the electrical conductivity of soil. The exceedance of metal contamination imposed negative impact to the soil environment and human health.


Author(s):  
Muhammad Murtaza Qureshi ◽  
Mohammad Amin Qureshi ◽  
Muhammad Saeed Qureshi ◽  
Afzal Shah

This study was aimed to assess the severity of heavy metal contamination in eastern coastal area of Pakistan. Agriculture lands near district Badin coastal area found contaminated due to mega surface canal drain network, carrying untreated industrial and municipal effluents along with pumped saline water. Thirty-two random soil samples were collected from different coastal areas. Arc Geographic Information System was used for spatial mapping. Soil samples from coastal areas of Badin contain average concentrations of heavy metals (mg/kg) as Hg 0.247±0.207, Ni 2.622±1.107,Zn 3.121±0.929, Cu 0.059±0.066, Fe 70.447±1.163, Mn7.062±1.251, Co 0.0167±0.033,Cr0.799±0.718.


Sign in / Sign up

Export Citation Format

Share Document