scholarly journals Kontaminasi Logam Berat di Kawasan Pesisir Tanjung Selor Kalimantan Utara

2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Tri Muji Susantoro ◽  
Ariani Andayani

<strong>Heavy Metal Contamination in the Coastal Area of Tanjung Selor North Kalimantan.</strong> The establishment of the North Kalimantan Province transformed the Tanjung Selor region and its surroundings into the provincial capital so that it will grow rapidly, both in terms of development and other activities. Monitoring environmental conditions, one of which is heavy metals in the waters need to be carried out as a starting environment before the area develops. This is important given the nature of heavy metals that change toxic at concentrations that exceed the threshold. The purpose of this study is to identify the potential for heavy metal contamination in the coastal area of Tanjung Selor, Bulungan Regency, North Kalimantan Province. Heavy metals studied is limiting to mercury (Hg), Chromium (Cr), Arsenic (As), Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). The location of the sampling was carried out using Landsat 8 imagery designed to represent the condition of the coastal area. Samples come from well water, river water, seawater, and marine sediments at 4, 9 and 5 observation stations respectively. Samples were taken on August 2014  using the grab sample method and analyzed for heavy metal content using the standard American Public Health Association (APHA) method with the Atomic Absorption Spectroscopy (AAS) instrument. Of the 23 samples produced, only 3 observation stations were not contaminated with heavy metals. While in the other 20 samples one of three types of heavy metals were found that exceeded the threshold. In general, Cu is the most detected metal exceeding the threshold in the study area found in samples of river water, sea water and sediment. Zn is found to exceed the threshold in well water. Pb is found to exceed the threshold in sample 5 of river water. Cd is found to exceed the threshold in samples of river water, sea water and sediment. The source of pollution is thought to originate from coal mining activities, oil palm plantations, and household waste. The overall results of this study show that river estuaries tend to accumulate heavy metals.

2012 ◽  
Vol 69 (6) ◽  
pp. 2013-2025 ◽  
Author(s):  
Seyedeh Belin Tavakoly Sany ◽  
Aishah Salleh ◽  
Abdul Halim Sulaiman ◽  
A. Sasekumar ◽  
Majid Rezayi ◽  
...  

Author(s):  
Muhammad Murtaza Qureshi ◽  
Mohammad Amin Qureshi ◽  
Muhammad Saeed Qureshi ◽  
Afzal Shah

This study was aimed to assess the severity of heavy metal contamination in eastern coastal area of Pakistan. Agriculture lands near district Badin coastal area found contaminated due to mega surface canal drain network, carrying untreated industrial and municipal effluents along with pumped saline water. Thirty-two random soil samples were collected from different coastal areas. Arc Geographic Information System was used for spatial mapping. Soil samples from coastal areas of Badin contain average concentrations of heavy metals (mg/kg) as Hg 0.247±0.207, Ni 2.622±1.107,Zn 3.121±0.929, Cu 0.059±0.066, Fe 70.447±1.163, Mn7.062±1.251, Co 0.0167±0.033,Cr0.799±0.718.


2020 ◽  
Vol 14 ◽  
pp. 117863022092141
Author(s):  
Nguyen Thi Minh Ngoc ◽  
Nguyen Van Chuyen ◽  
Nguyen Thi Thu Thao ◽  
Nguyen Quang Duc ◽  
Nguyen Thi Thu Trang ◽  
...  

Background: Heavy metal contamination and related risks for the environment and human health are matters of increasing concern. Methods: The levels of 4 heavy metals (Cr, Cd, Pb, and As) were evaluated in 2 water types (surface and well), 4 types of seafood (tiger shrimp, stuffed snail, snake-head fish, and catfish), and 27 types of vegetables (12 leafy vegetables, 4 pea plants, 4 tuber vegetables, and 7 herbs) that are commonly consumed in northern coastal communes located in Vietnam. Atomic absorption spectrometry was employed for quantification. Results: The mean concentrations of heavy metals detected in water, seafood, and vegetable samples exceeded the national permitted standards and World Health Organization (WHO) recommendation values by at least 2-fold, 2.5-fold, and 5-fold for surface water, vegetables, and well water, respectively. The concentrations of all 4 heavy metals detected in seafood samples were higher than the standards. The levels of heavy metals decreased with increasing distance between the sample collection point and the pollution source. Conclusions: This is the first report of heavy metal contamination of common sources of food and water in the northern coastal area of Vietnam. Significantly, the concentrations of heavy metals detected in study samples exceeded the regulatory limits. These results underscore the importance of continued monitoring and the development of intervention measures to ensure that the quality of food and water meets established standards and protects the health of the local population.


Author(s):  
K. M. Mbemba ◽  
M. B. Mabiala Loubilou ◽  
J. M. Ouamba

Inadequate management of ash generated by household waste burned in open air in Republic of Congo, generates pollution sites especially through heavy metal contamination (Pb, Ni, Cr, Cu, Zn). The aim of this study is to evaluate the chemical durability of cementitious matrices containing waste ashes and their ability to retain in their structure heavy metals contained in these ashes. To do this, we collected 40 kg of waste coming from 4 landfills (A, B, C, D) in Brazzaville city. Waste was then burned and turned into ash. 6 cementitious matrice formulations (P1, P2, P3, P4, P5, P6) based on Dolisie Portland cement were made by varying the cement/ash/lime rations. We carried out static leaching tests with raw ashes and cementitious matrices at pH = 7 and at 25°C in distilled water during 30 days. This study shows that cementitious matrices containing ash have good potentiality for retention of heavy metals (more than 75%). But, cementitious matrices containing ash and lime give better results with retention rates between 90-99%.


2007 ◽  
Vol 76 (1) ◽  
pp. 149-154 ◽  
Author(s):  
T. Vítek ◽  
P. Spurný ◽  
J. Mareš ◽  
A. Ziková

Heavy metal contamination of the Loučka River water ecosystem was assessed in July 2005. We analyzed concentrations of T-Hg (total mercury), Cd, Pb, Cr, Cu, Zn, and Ni in water, sediments, zoobenthos, and in the brown trout (Salmo trutta m. fario) muscle and liver tissues (a total of 28 individuals) at four sampling sites. The highest Pb and Ni concentrations (4.634-12.050 and 0.689-24.980 mg kg-1) were found in sediments. The zoobenthos was most contaminated by Zn and Cu (0.556-1.505 and 2.925-74.300 mg kg-1). The heavy metal contamination of river water was highest in Ni and Cr (0.1-6.8 and 0.5-10.0 mg l-1). Concentrations of heavy metals in the brown trout muscle were following (in mg kg-1): Pb 0.108 ± 0.073 - 1.010 ± 0.506, Cd 0.003 ± 0.002 - 0.026 ± 0.022, Zn 3.956 ± 0.371 - 5.801 ± 1.718, Ni 0.058 ± 0.018 - 0.102 ± 0.046, Cr 0.028 ± 0.005 - 0.073 ± 0.039, Cu 0.329 ± 0.079 - 0.437 ± 0.064 and Hg 0.065 ± 0.008 - 0.106 ± 0.047. Statistical differences (P < 0.05) in the brown trout muscle were in Pb and Zn. Cd, Cu and Zn were markedly accumulated in the brown trout liver (concentrations 0.107 ± 0.066 - 0.223 ± 0.078, 59.973 ± 38.951 - 145.800 ± 48.286 and 30.671 ± 3.574 - 34.274 ± 7.226 mg kg-1). Humans of 60 kg body mass may consume 1.5 kg of brown trout muscle from the Loučka River weekly without any risk. Adverse influence of the Uniglas distillery on the Loučka River environment contamination by heavy metals was not confirmed.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Irsan . ◽  
Yusthinus T. Male ◽  
Debby A. J. Selanno

Sungai Waelata dan Sungai Anahoni merupakan dua sungai tempat beroperasinya trommel untuk pengolahan material emas Gunung Botak dan Gogrea. Melalui aliran sungai, limbah merkuri hasil pengolahan trommel terangkut dan terbawa ke muara yang pada akhirnya akan mencemari perairan laut Teluk Kayeli. Kerang Polymesoda erosa merupakan salah satu jenis kerang yang sering digunakan dalam pemantauan logam berat merkuri, terutama pada wilayah muara sungai. Penelitian ini bertujuan untuk menganalisis kadar logam berat merkuri(Hg) pada air, sedimen dan kerang Polymesoda erosadi Muara Sungai Waelata dan Sungai Anahoni Kabupaten Buru. Hasil penelitian menunjukan konsentrasilogamberat merkuripada air di Muara Sungai Waelata dan Sungai Anahoni tidak terdeteksi di semua stasiun penelitian dan dibawah baku mutu air laut untuk biota laut berdasarkan Kepmen LH No. 51 Tahun 2004 sebesar 0,001 ppm. Konsentrasilogamberat merkuripada sedimenmemilikikisaranrata­ratasebesar0,134­0,874ppm dan dibawah baku mutu sedimen berdasarkan ANZECC/AMRCANZ (2000) sebesar 1,0 ppm. Konsentrasilogamberat merkuripada kerang Polymesoda erosamemilikikisaranrata­ratasebesar0,123­0,206 ppm dan dibawah Batasan Maksimum Cemaran Logam Berat Dalam Pangan merujuk pada Standar Nasional Indonesia (SNI) No. 7387 Tahun 2009 sebesar 1,0 ppmABSTRACT The Waelata River and the Anahoni River are the two rivers where trommel operates for the processing of gold material from Gunung Botak and Gogrea. By the river, mercury waste from the processing of trommel is transported through estuary which will ultimately pollute the waters of the Kayeli Bay. Polymesoda erosa shells are one type of shellfish that is often used in monitoring heavy metals of mercury, especially in the estuary region. This study aims to analyze the concentration of heavy metal mercury (Hg) in water, sediments and Polymesoda erosa shells in the Waelata River and Anahoni River in Buru Regency. The results showed that the concentration of mercury heavy metals in water in the Waelata River and Anahoni River were not detected at all research stations and were below sea water quality standard for marine biota based on Minister of Environment Decree No. 51 of 2004 which is 0.001 ppm. The concentration of mercury heavy metals in sediments has an average range of 0.1340.887 ppm and is below the sediment quality standard based on ANZECC/AMRCANZ (2000) of 1.0 ppm. The concentration of mercury heavy metals in Polymesoda erosa shells has an average range of 0.1230.206 mg/kg and under the Maximum Limit of Heavy Metal Contamination in Food refers to the Indonesian National Standard (SNI) No. 7387 of 2009 which is 1.0 ppm.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 699
Author(s):  
Tengku Said Raza’i ◽  
Thamrin Thamrin ◽  
Nofrizal Nofrizal ◽  
Viktor Amrifo ◽  
Hilfi Pardi ◽  
...  

Background: Heavy metals are materials naturally occurring in nature and increase with a rise in human activity. Ex-mining areas and domestic waste from human settlements are sources of heavy metal contamination that enter and pollute water, which then accumulates in various organisms including the Caulerpa racemosa community. The accumulation of heavy metals in C. racemosa has a wide impact on the food chain in aquatic ecosystems and humans because this alga is a consumptive commodity.   Methods: Sampling of C. racemosa was carried out at seven sites on Bintan Island, Indonesia covering the eastern (Teluk Bakau, Beralas Pasir, Malang Rapat), northern (Berakit and Pengudang), western (Sakera), and southern parts (Tg. Siambang). Sampling was carried out during different monsoons, and heavy metals in water and sediment samples were measured to determine the heavy metal concentration. Heavy metals were analyzed by a spectrophotometric method using Atomic Absorption Spectrophotometry.   Results: The results showed that heavy metal concentrations fluctuate according to changes in the wind season, which carry currents and spread pollutants into the water. The concentration of metal in the water is also from anthropogenic activities. The heavy metal content of cadmium (Cd), lead (Pb), copper (Cu), iron (Fe), and zinc (Zn) in C. racemosa is high in locations close to settlements. Meanwhile, in seawater samples, Fe and Zn metals have the highest concentrations compared to others.  Conclusions: Ex-bauxite mines are a source of Fe and Zn metal contamination in the environment, especially at Tg. Siambang. The levels of these heavy metals in the sediment are also high, as surface particle deposits accumulate at the bottom of the sediment. In general, the levels of heavy metals Cd, Pb, Cu, Fe, and Zn increase in the northern monsoon because the dynamics of the water transport greater heavy metal pollution.


2021 ◽  
Vol 84 (6) ◽  
pp. 1498-1508
Author(s):  
Nazanin Kalani ◽  
Borhan Riazi ◽  
Abdolreza Karbassi ◽  
Faramarz Moattar

Abstract This study aimed to measure and ecologically assess heavy metals, including As, Cr, Pb, Cd, and Ni in water and sediment samples taken from Gomishan, an international wetland located in Golestan, Iran. Four sampling stations were selected to cover all parts of the wetland. The analyses of the heavy metals were performed by ICP-MS. Based on the content of the heavy metals in the sediments, the values of risks for individual heavy metals, as Er, and for total heavy metals, as IR, were estimated. Igeo and EF also presented the soil quality in terms of accumulated contamination. The average content of the heavy metals in water was 23.12, 4.14, 10.04, 6.71, and 94.48 μg/L for As, Cd, Cr, Ni, and Pb, respectively. The heavy metal concentrations in sediments were decreased in the following order: Pb (2130 ppb) &gt; As (655 ppb) &gt; Cr (295 ppb) &gt; Ni (148.8 ppb) &gt; Cd (148.8 ppb). The potential risk values for individual heavy metals were in the low range, Er &lt; 40, except for Cd, which mostly posed a moderate ecological risk. The values of EF and Igeo showed that the sediments sampled from the Gomishan wetland were minimally enriched and contaminated. As the Gomishan wetland has a moderate risk of heavy metal contamination, conservative and monitoring activities should be performed.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Sign in / Sign up

Export Citation Format

Share Document