scholarly journals Geological-geotechnical risk mapping of gravitational mass movements in an urban area in Colombo, Brazil

2021 ◽  
Vol 44 (4) ◽  
pp. 1-11
Author(s):  
Carla Pontes ◽  
Roberta Boszczowski ◽  
Leonardo Ercolin Filho

This work presents a geological-geotechnical risk map of gravitational mass movements and a susceptibility map to shallow translational slides to Vila Nova community, located in the municipality of Colombo, Brazil. The first map was created through a qualitative mapping methodology and the second one was elaborated using a deterministic method of slope stability. An aerial photogrammetric survey with UAV technology was performed, as well as field reconnaissance, laboratory testing, and geoprocessing techniques. Seven slope failures were identified as well as a range of other evidences of instability associated with the predisposition of the terrain to erosive and gravitational movements linked to human intervention without urban planning and engineering techniques. Moreover, the qualitative and quantitative analyses pointed out that 13% to 9% of the study area, respectively, are in a very high-risk condition for landslides. Thus, the resulting cartographic products are presented as an important technical contribution for landslide risk management as well as land use planning for reducing the geotechnical problems faced on site.

2021 ◽  
Vol 13 (4) ◽  
pp. 815
Author(s):  
Mary-Anne Fobert ◽  
Vern Singhroy ◽  
John G. Spray

Dominica is a geologically young, volcanic island in the eastern Caribbean. Due to its rugged terrain, substantial rainfall, and distinct soil characteristics, it is highly vulnerable to landslides. The dominant triggers of these landslides are hurricanes, tropical storms, and heavy prolonged rainfall events. These events frequently lead to loss of life and the need for a growing portion of the island’s annual budget to cover the considerable cost of reconstruction and recovery. For disaster risk mitigation and landslide risk assessment, landslide inventory and susceptibility maps are essential. Landslide inventory maps record existing landslides and include details on their type, location, spatial extent, and time of occurrence. These data are integrated (when possible) with the landslide trigger and pre-failure slope conditions to generate or validate a susceptibility map. The susceptibility map is used to identify the level of potential landslide risk (low, moderate, or high). In Dominica, these maps are produced using optical satellite and aerial images, digital elevation models, and historic landslide inventory data. This study illustrates the benefits of using satellite Interferometric Synthetic Aperture Radar (InSAR) to refine these maps. Our study shows that when using continuous high-resolution InSAR data, active slopes can be identified and monitored. This information can be used to highlight areas most at risk (for use in validating and updating the susceptibility map), and can constrain the time of occurrence of when the landslide was initiated (for use in landslide inventory mapping). Our study shows that InSAR can be used to assist in the investigation of pre-failure slope conditions. For instance, our initial findings suggest there is more land motion prior to failure on clay soils with gentler slopes than on those with steeper slopes. A greater understanding of pre-failure slope conditions will support the generation of a more dependable susceptibility map. Our study also discusses the integration of InSAR deformation-rate maps and time-series analysis with rainfall data in support of the development of rainfall thresholds for different terrains. The information provided by InSAR can enhance inventory and susceptibility mapping, which will better assist with the island’s current disaster mitigation and resiliency efforts.


Author(s):  
Luguang Luo ◽  
Luigi Lombardo ◽  
Cees van Westen ◽  
Xiangjun Pei ◽  
Runqiu Huang

AbstractThe vast majority of statistically-based landslide susceptibility studies assumes the slope instability process to be time-invariant under the definition that “the past and present are keys to the future”. This assumption may generally be valid. However, the trigger, be it a rainfall or an earthquake event, clearly varies over time. And yet, the temporal component of the trigger is rarely included in landslide susceptibility studies and only confined to hazard assessment. In this work, we investigate a population of landslides triggered in response to the 2017 Jiuzhaigou earthquake ($$M_w = 6.5$$ M w = 6.5 ) including the associated ground motion in the analyses, these being carried out at the Slope Unit (SU) level. We do this by implementing a Bayesian version of a Generalized Additive Model and assuming that the slope instability across the SUs in the study area behaves according to a Bernoulli probability distribution. This procedure would generally produce a susceptibility map reflecting the spatial pattern of the specific trigger and therefore of limited use for land use planning. However, we implement this first analytical step to reliably estimate the ground motion effect, and its distribution, on unstable SUs. We then assume the effect of the ground motion to be time-invariant, enabling statistical simulations for any ground motion scenario that occurred in the area from 1933 to 2017. As a result, we obtain the full spectrum of potential coseismic susceptibility patterns over the last century and compress this information into a hazard model/map representative of all the possible ground motion patterns since 1933. This backward statistical simulations can also be further exploited in the opposite direction where, by accounting for scenario-based ground motion, one can also use it in a forward direction to estimate future unstable slopes.


Author(s):  
Barahim Adnan A. ◽  
Khanbari Khaled M. ◽  
Algodami Amal F. ◽  
Almadhaji Ziad A. ◽  
Adris Ahmed M.

A slope stability assessment of Wadi Dhahr area, located northwest of Sana’a the capital of Yemen, was carried out in this study. The study area consists of sandstone and volcanic rocks that are deformed by number of faults, joints and basaltic dykes. All the important factors affecting slope stability in the area such as slope angle, slope height, discontinuities measurements, weathering, vegetation cover, rainfall and previous landslides were evaluated. The study was conducted based on the integration of field investigation and satellite image processing. A landslide susceptibility map was produced with the Landslide Possibility Index (LP1) System, and the correlation values were computed between the factors measured and Landslide Possibility Index values. The fractures counted by satellite image were categorised according to their length and zones based on their concentrations. It was found that plain sliding and rockfall are the main modes of failure in the area, while rolling and toppling are rare. Some remedial measures are proposed to protect the slopes where it is needed,  such as the removal of rock overhangs, unstable blocks and trees, and by supporting the toe of slopes and overhanging parts by retaining walls and erecting well sealed drainage conduits. The results will assist in slope management and land use planning in the area.


2018 ◽  
Vol 149 ◽  
pp. 02071 ◽  
Author(s):  
Kubwimana Désiré ◽  
Ait Brahim Lahsen ◽  
Bousta Mahfoud ◽  
Dewitte Olivier ◽  
Abdelouafi Abdellah ◽  
...  

The Kanyosha watershed is unstable due to the presence of several landslides, which occupy about 3% of the study area. They are causing major damage which costs expensive to the Government of Burundi as well as to the population residing there and their properties. Roads, schools, irrigation canals, houses, crop fields, etc., are in danger of collapse. These landslides are mostly naturally occurring but can sometimes be reactivated by heavy rains or human activities during the excavation of building materials from the river bed.In order to carry out this study, we used the multivariate statistical classification with weighting of the responsible parameters of landslides risk to reach the susceptibility map of mass movements in the Kanyosha watershed. Remote sensing, geology, morphometry and bibliography were the data sources for the different parameters. Google Earth images, ortho-photos and field prospecting helped us to identify the landslides needed to validate the susceptibility map.During the fieldwork, we observed 34 landslides of different types, which were superimposed on the mass movements susceptibility map obtained using the Analytic Hierarchy Process (AHP) and compared to previous studies in which the matrix indexing method was used. We found approximately similar results with the consideration of different scales of work. These reasons confirm the validity of the susceptibility map at the level of the Kanyosha watershed, a map which is an essential document for urban planning and land management.


2021 ◽  
Author(s):  
Sara Amoroso ◽  
Josip Barbača ◽  
Nikola Belić ◽  
Branko Kordić ◽  
Vlatko Brčić ◽  
...  

<p>Earthquakes and related coseismic effects at the surface, both primary and secondary, such as liquefaction and lateral spreading, can impact humans due to induced economic or social disruptions (e.g. slope, bridge and building foundation failures, flotation of buried structures). In this respect, it results of primary interest to map liquefaction induced evidences soon after an earthquake. On the 29th December 2020, a major earthquake (Mw 6.4) occurred in Croatia, close to Petrinja, 45 km south of Zagreb, generating widespread liquefaction and lateral spreading phenomena in a radius of approximately 20 km from the epicentre. A European team of researchers (geologists and engineers), in strict collaboration with the Croatian Geological Survey, performed field reconnaissance campaigns with the aim to provide a detailed identification and characterization of the primary and secondary geological and geotechnical coseismic effects induced by the Croatian earthquakes. Specifically with reference to the liquefaction phenomena, the Working Group integrated the data collected directly in the field with those from remote survey by drone aerial photos acquired in the post-event immediate. The adopted process allowed the collection of the liquefaction record with the highest possible completeness both in terms of pattern and distribution of the phenomena. The database includes several detailed case studies typified by the following characteristics: (1) liquefaction occurring on alluvial plain sites (Kupa river, Sava river and Glina river); (2) blows made by sand and/or gravel with local presence of shells and armored mud balls; (3) lateral spreading phenomena along road and river embankments; (4) sand ejecta of different grain size and matrix, even at the same site; (5) sand and/or gravel ejecta along fault traces. The characteristics of these features are discussed with reference to the alluvial setting and tectonic context. All together, the detailed survey of these recent liquefaction features will assist to build new empirical relations, to update the existing ones and to mitigate the effects of future earthquakes recognizing liquefaction prone areas for a correct land use planning, as for seismic microzonation studies.</p>


2015 ◽  
Vol 4 (2) ◽  
pp. 16-33 ◽  
Author(s):  
Halil Akıncı ◽  
Ayşe Yavuz Özalp ◽  
Mehmet Özalp ◽  
Sebahat Temuçin Kılıçer ◽  
Cem Kılıçoğlu ◽  
...  

Artvin is one of the provinces in Turkey where landslides occur most frequently. There have been numerous landslides characterized as natural disaster recorded across the province. The areas sensitive to landslides across the province should be identified in order to ensure people's safety, to take the necessary measures for reducing any devastating effects of landslides and to make the right decisions in respect to land use planning. In this study, the landslide susceptibility map of the Central district of Artvin was produced by using Bayesian probability model. Parameters including lithology, altitude, slope, aspect, plan and profile curvatures, soil depth, topographic wetness index, land cover, and proximity to the road and stream were used in landslide susceptibility analysis. The landslide susceptibility map produced in this study was validated using the receiver operating characteristics (ROC) based on area under curve (AUC) analysis. In addition, control landslide locations were used to validate the results of the landslide susceptibility map and the validation analysis resulted in 94.30% accuracy, a reliable outcome for this map that can be useful for general land use planning in Artvin.


2018 ◽  
Vol 203 ◽  
pp. 04004
Author(s):  
Muhammad Raza Ul Mustafa ◽  
Abdulkadir Taofeeq Sholagberu ◽  
Khamaruzaman Wan Yusof ◽  
Ahmad Mustafa Hashim ◽  
Muhammad Waris Ali Khan ◽  
...  

Land degradation caused by soil erosion remains an important global issue due to its adverse consequences on food security and environment. Geospatial prediction of erosion through susceptibility analysis is very crucial to sustainable watershed management. Previous susceptibility studies devoid of some crucial conditioning factors (CFs) termed dynamic CFs whose impacts on the accuracy have not been investigated. Thus, this study evaluates erosion susceptibility under the influence of both non-redundant static and dynamic CFs using support vector machine (SVM), remote sensing and GIS. The CFs considered include drainage density, lineament density, length-slope and soil erodibility as non-redundant static factors, and land surface temperature, soil moisture index, vegetation index and rainfall erosivity as the dynamic factors. The study implements four kernel tricks of SVM with sequential minimal optimization algorithm as a classifier for soil erosion susceptibility modeling. Using area under the curve (AUC) and Cohen’s kappa index (k) as the validation criteria, the results showed that polynomial function had the highest performance followed by linear and radial basis function. However, sigmoid SVM underperformed having the lowest AUC and k values coupled with higher classification errors. The CFs’ weights were implemented for the development of soil erosion susceptibility map. The map would assist planners and decision makers in optimal land-use planning, prevention of soil erosion and its related hazards leading to sustainable watershed management.


2014 ◽  
Vol 23 (6) ◽  
pp. 845
Author(s):  
Rouba Ziadé ◽  
Chadi Abdallah ◽  
Nicolas Baghdadi

Mass movements are major hazards that threaten natural and human environments. In Lebanon, the occurrence of mass movements increased by almost 60% between 1956 and 2008. Forest fire has emerged as an additional hazard: it destroyed over 25% of Lebanon’s forests in a period less than 40 years. This paper investigates the potential effect of forest fire on the occurrence of mass movements in the Damour and Nahr Ibrahim watersheds of Lebanon. Mass movement and forest fire inventory maps were produced through remote sensing using aerial and satellite images. Forest fire was included as an additional factor in mass movement induction, and its effect was quantified from Landsat images through the normalised burn ratio (NBR) index. A field study was conducted to substantiate the mass movement inventory and NBR maps. Following the standardisation of the effect factors into layers using geographic information systems, the weight factor of each layer for inducing mass movements was evaluated using the modified InfoVal method, and a mass movement susceptibility map was generated. Exceeded only by changes in land cover, the NBR produced the highest weights, making forest fire burn severity the second highest factor influencing mass movement occurrence in the study areas.


2020 ◽  
Vol 4 (1) ◽  
pp. 23-27
Author(s):  
R. O. E. Ulakpa ◽  
V.U.D. Okwu ◽  
K. E. Chukwu ◽  
M. O. Eyankware

Identification and mapping of landslide is essential for landslide risk and hazard assessment. This paper gives information on the uses of landsat imagery for mapping landslide areas ranging in size from safe area to highly prone areas. Landslide mitigation largely depends on the understanding of the nature of the factors namely: slope, soil type, lineament, lineament density, elevation, rainfall and vegetation. These factors have direct bearing on the occurrence of landslide. Identification of these factors is of paramount importance in setting out appropriate and strategic landslides control measures. Images for this study was downloaded by using remote sensing with landsat 8 ETM and aerial photos using ArcGIS 10.7 and Surfer 8 software, while Digital Elevation Model (DEM) and Google EarthPro TM were used to produce slope, drainage, lineament and elevation. From the processed landsat 8 imagery, landslide susceptibility map was produced, and landslide was category into various class; low, medium and high. From the study, it was observed that Enugu and Anambra state ranges from high to medium in terms of landslide susceptibility, Imo state ranges from medium to low.


2015 ◽  
Vol 8 (4) ◽  
pp. 1142-1152
Author(s):  
Danielle Lopes de Sousa ◽  
Abner Monteiro Nunes Cordeiro ◽  
Frederico de Holanda Bastos

Sign in / Sign up

Export Citation Format

Share Document