scholarly journals Simplified Irregular Beam Analysis and Design

2019 ◽  
Vol 5 (7) ◽  
pp. 1577-1589
Author(s):  
Mohammed Salem Al-Ansari ◽  
Muhammad Shekaib Afzal

This paper presents simple method to estimate the strength design of reinforced concrete beam sections based on structural safety and reliability. Irregular beam shaped sections are commonly used nowadays in the construction industry. This study reveals the simplified method to analyze and design the different irregular shaped beam sections. In this study, the selected irregular beam shaped sections are divided mainly into three groups, beams with straight edges, beams with sloped edges and circular beams. Each group contains the most commonly used beam shaped sections in that category. Six beams sections (B-1 to B-6) are selected for group-1 whereas five beam sections (B-7 to B-11) and a circular beam section (B-12) are chosen for group 2 and 3 respectively. Flexural beam formulas for three groups of reinforced concrete beams are derived based on section geometry and ACI building code of design. This study also analyzed numerical examples for some of the sections in each group category using the proposed simplified method to determine the strength design of the irregular beams. The results obtained using simplified method for all of the three groups are compared with the finite element software (SAP v2000). The percentage difference of simplified method with the finite element software ranges within 5% to 10%. This makes the simplified method for irregular shaped beam sections quite promising.

2020 ◽  
Vol 3 (4) ◽  
pp. 276-288
Author(s):  
Mohammed Salem Al-Ansari ◽  
Muhammad Shekaib Afzal

This paper presents a simplified method to analyze and design the irregular reinforced concrete slabs based on structural safety and economy. The triangular, trapezoidal, and curved slab sections are selected in this study to be analyzed and designed using a simplified design method approach (SDM) as these sections are the most common type of irregular slab sections used in the construction industry. Flexural design formulas for triangular and curved slabs are derived based on the theoretical principles of plate and yield line theories and ACI building code of design constraints. Numerical examples are presented in this study to illustrate the method capability of designing the most commonly used irregular slabs sections. The complete design of four triangular slabs (TS-1 to TS-4) and four curved slabs (CS-1 to CS-4) is provided in this study. Besides, the required equivalent (triangular and rectangular) shaped sections are provided to deal with irregular trapezoidal slab section. The selected irregular slab sections (triangular and curved slab sections) are also analyzed and designed using the computer software (SAFE) and the results obtained are compared with the numerical solutions. The percentage difference of the simplified method with the finite element software (SAFE) ranges from 4% to 12%. The results obtained for all the selected irregular shaped slab sections indicates that the SDM is a good and quick approach to design irregular (triangular and curved) slab sections.


2013 ◽  
Vol 394 ◽  
pp. 381-384
Author(s):  
Ke Ding Liu

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Sunjiagou reinforced concrete U-shaped beam-supported aqueduct. Considering five combination cases in aqueducts construction and operational process, researching variation laws of the aqueducts stress and displacement. Analysis results show that design scheme of Sunjiagou reinforced concrete U-shaped beam-supported aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete U-shaped beam-supported aqueduct.


2020 ◽  
Vol 17 (9) ◽  
pp. 4287-4293
Author(s):  
D. Santhosh ◽  
R. Prabhakara ◽  
M. D. Ragavendra Prasad

The Low, Medium and High rise reinforced concrete (RC) buildings are common in all cities in all countries. Unreinforced masonry wall (URW) is commonly used in low, medium and high rise building as a partition wall both in interior and exterior of building. But structural designers are not considered URW in analysis and design of buildings. This URM wall as an infill plays a very important role in structure subjected to lateral load. So it is very essential to know the nonlinear behavior of low, medium and high rise frame with and without infill. To conduct experiment for understanding the nonlinear behaviour of low, medium and high rise RC frame is very expensive and need good sophisticated testing facilities. With the available many finite element softwares, it is easy to create model and to know the performance of structure. So in this study, a finite element software ATENA 2D (2003) were used to conduct nonlinear analysis for capture nonlinear behaviour of low, medium and high rise RC frame with infill and without infill. Load versus displacement graphs, magnitude of principal compressive stresses, magnitude principal tensile stresses, stress contours, and cracks pattern are used to know the performance of low, medium and high rise RC frame with infill.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012034
Author(s):  
Yihong Hong

Abstract Reinforced concrete structure is widely used in building structure because of its unique physical and mechanic properties, but with the increase of service life, there will be different degrees of damage in the structures. In this paper, combined with the test beam, a model of reinforced concrete beam strengthened with CFRP is established by Using ANSYS finite element software, nonlinear finite element analysis is carried out on the whole process of yield, cracking and destruction of the test beam under secondary load, while different working states of CFRP sheets were simulated by the life and death unit. The results show that the bending performance of reinforced concrete (RC) beams strengthened with CFRP can be predicted by selecting the finite element analysis model rationally.


2020 ◽  
Vol 198 ◽  
pp. 01029
Author(s):  
Yaohui Shen ◽  
Longbin Lin ◽  
Zhengwei Feng

The finite element software ANSYS is used to calculate the ultimate bearing capacity of ordinary beam and circular hole beam, and the results are compared with the test values made by predecessors. The value of shear transfer coefficient between cracks of reinforced concrete beam with circular hole in the abdomen in ANSYS finite element simulation is summarized. The coefficient is used to simulate the circular hole beam strengthened by steel sleeve, and it is pointed out that the steel tube is used to reinforce the circular hole beam The effect of tube reinforcement on the bearing capacity of circular hole beam is not obvious.


2013 ◽  
Vol 848 ◽  
pp. 100-103
Author(s):  
Xin Yan Wu ◽  
An Ping Lou

In this paper, finite element model (FEM) of a reinforced concrete structure cantilevered slab was established in non-linear finite element software ABAQUS. Influence of cantilever length and tensile reinforcement on the structural displacement and vibration frequency was calculated. The results show that the vibration frequency of the first order and maximum displacement will various with the diameter of the reinforced cantilever slab and the length of the cantilevered slab. This paper will offer the references to the analysis and design of the cantilever slab.


2019 ◽  
Vol 5 (11) ◽  
pp. 2296-2308 ◽  
Author(s):  
Rania Salih Mohammed ◽  
Zhou Fangyuan

In this study, the behavior of reinforced concrete beams reinforced with FRP bars was investigated. A total of seventeen models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity modeling was considered. Two types of fiber polymer bars, CFRP and GFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as (diameter size, number of bars), type of FRP bars, longitudinal arrangement for FRP bars. All results were analyzed and discussed through, load-deflection diagram, according, to the difference parameter considered. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the cracking load. The load capacity enhanced in the range of (7.88-64.82%) when used CFRP bars. The load-carrying capacity of beams strengthened with CFRP is higher than that of strengthened with GFRP. Furthermore, the use of FRP bars in bottom and steel in top reinforcement is useful to overcome the large deflection, and improving the beam ductility. Finally, the results of finite element models were compared with the prediction equation, according to ACI440.1R-15.


2012 ◽  
Vol 446-449 ◽  
pp. 566-571
Author(s):  
Jia Quan Wu ◽  
Ji Yao ◽  
Hong Yan Li ◽  
Liang Cao ◽  
Kun Ma

This paper describes the strain mode damage detection theory and a three-dimensional reinforced concrete beams finite element model was built by finite element software. The different degree injury models tests were compared. Experiment’s results show that the first four natural frequencies of different degree injury models are small differences while the corresponding strain modes have a significant changed in damage location. The structure of the strain mode changes are still evident when structural damage occurred in the strain mode node.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jia Yang ◽  
Xiao Liu ◽  
Wei Li

This paper presents the numerical analysis of prestressed reinforced concrete (PRC) beams strengthened with near-surface mounted (NSM) carbon fiber reinforced polymers (CFRP). ABAQUS finite element software was used to simulate the existing test beams to investigate the flexural behaviors of PRC beams strengthened with NSM CFRP strips. The finite element model of beams strengthened with NSM CFRP strips was established. The finite element calculation results were compared with the experimental results to verify the accuracy and effectiveness of the model. Based on this model, the influences of concrete strength grade and amount of CFRP strips on the flexural behaviors of directly strengthened beams and the cycle numbers and overload amplitude on the flexural behaviors of damaged strengthened beam were further analyzed, and the load-carrying capacity calculation formula of PRC beam strengthened with NSM CFRP strips was established. The results showed that the simulation results and the theoretical calculation were consistent with the test results. With the increase of concrete strength grade and amount of CFRP strips, the ultimate load of directly strengthened beams increased significantly, with a maximum increase of 21.3% and 23.0%, respectively. When the concrete strength grade exceeded C50, the improvement of the ultimate load was limited. When the overload amplitude was less than 60% of the ultimate load, the cycle numbers (within 500 times) had little effect on the yield load, ultimate load, and deformation. When the overload amplitude was higher than 60% of the ultimate load, the deformation increased, and the ultimate load decreased with the increase of the cycle numbers. The larger the overload amplitude, the smaller the ultimate load, and the larger the deformation under the same cycle numbers.


2013 ◽  
Vol 663 ◽  
pp. 219-224
Author(s):  
Qi Yin Shi ◽  
Chun Zhao ◽  
Chun Wang ◽  
Qing Li

In this paper, the crack width and deflection of a local corroded reinforced concrete beam is investigated. The influence of the rebar corrosion on a concrete beam is analyzed first. Based on the constitutive relationship of the corroded reinforced concrete, the corroded reinforced concrete is regarded as a bond-slip composite beam which is comprised of corroded rebar and concrete. By using the large-scale finite element software ANSYS, a separate reinforced concrete beam model is developed after selecting the reasonable element. By using the proposed model, the positions of the cracks are determined. Moreover, the cracks width and the deflection of the beam at the corroded segment are calculated through using formula and extracting the results data from ANSYS. At last, the results by the standard design of concrete structures (GB50010-2010) and EN1992-1-1:2004[1] are compared through the list, which show the crack width and deflection of the local corroded reinforced concrete beams calculated by ANSYS is feasible.


Sign in / Sign up

Export Citation Format

Share Document