scholarly journals Healing of Generated Cracks in Cement Mortar Using MICP

2020 ◽  
Vol 6 (4) ◽  
pp. 679-692
Author(s):  
Prakash B. Kulkarni ◽  
Pravin Dinkar Nemade ◽  
Manoj Pandurang Wagh

This research is carried out to investigate pre-existing repair cracks in cement mortar using the microbiologically induced calcium carbonate precipitation (MICP) technology. In the study, 20-cylinder mortar samples (45 mm in diameter and 40 mm in length) were split to have cracked width of various sizes. Out of twenty cracked samples, sixteen samples of average crack width ranging from 0.12 to 1.3 mm were repaired using the MICP method, while four cracked samples, with an average crack width ranging from 0.16 to 1.55 mm were soaked under distilled water. The water permeability and split tensile strength (STS) of these repaired mortars were tested. The amount of CaCO3 precipitated on the cracked mortar surfaces was evaluated. The results indicated that the MICP repair technique clearly reduced the water permeability of the cracked samples within the range of 73 to 84 %; while water-treated samples were too weak to undergo test. MICP-repaired samples had STS ranging from 29 to 380 kPa after 24 rounds of treatment. A relationship between the STS and percentage amount of CaCO3 precipitated was observed for samples with an average crack width between 0.29 and 1.1 mm, which indicated that STS increased with percentage increase in CaCO3 precipitated on the crack surfaces.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1949
Author(s):  
Seth Kane ◽  
Abby Thane ◽  
Michael Espinal ◽  
Kendra Lunday ◽  
Hakan Armağan ◽  
...  

The development of methods to reuse large volumes of plastic waste is essential to curb the environmental impact of plastic pollution. Plastic-reinforced cementitious materials (PRCs), such as plastic-reinforced mortar (PRM), may be potential avenues to productively use large quantities of low-value plastic waste. However, poor bonding between the plastic and cement matrix reduces the strength of PRCs, limiting its viable applications. In this study, calcium carbonate biomineralization techniques were applied to coat plastic waste and improved the compressive strength of PRM. Two biomineralization treatments were examined: enzymatically induced calcium carbonate precipitation (EICP) and microbially induced calcium carbonate precipitation (MICP). MICP treatment of polyethylene terephthalate (PET) resulted in PRMs with compressive strengths similar to that of plastic-free mortar and higher than the compressive strengths of PRMs with untreated or EICP-treated PET. Based on the results of this study, MICP was used to treat hard-to-recycle types 3–7 plastic waste. No plastics investigated in this study inhibited the MICP process. PRM samples with 5% MICP-treated polyvinyl chloride (PVC) and mixed type 3–7 plastic had compressive strengths similar to plastic-free mortar. These results indicate that MICP treatment can improve PRM strength and that MICP-treated PRM shows promise as a method to reuse plastic waste.


2021 ◽  
Vol 109 ◽  
pp. 103391
Author(s):  
Catherine M. Kirkland ◽  
Arda Akyel ◽  
Randy Hiebert ◽  
Jay McCloskey ◽  
Jim Kirksey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document