scholarly journals Incorporating of Two Waste Materials for the Use in Fine-Grained Soil Stabilization

2020 ◽  
Vol 6 (6) ◽  
pp. 1114-1123 ◽  
Author(s):  
Hassnen Mosa Jafer ◽  
Zaid Hameed Majeed ◽  
Anmar Faleh Dulaimi

The present experimental work briefly aimed to utilize two different waste materials; calcium carbide residue (CCR) and the locally available rice husk ash (RHA) to produce an eco-friendly binder for the use in fine-grained soil stabilization. The effect of different binary mixtures, produced by mixing CCR and RHA with different proportion, on the geotechnical properties of a fine-grained soil was investigated. For the unconfined compressive strength (UCS) test, the soil specimens were subjected to various curing periods (7, 21, 28 and 90 days). The microstructure of the soil treated with the optimum mixture was carried out by utilizing scanning electron microscopy (SEM) test. Results of UCS test showed an interesting growth after the treatment of binary mixtures relative to those samples treated with only CCR.  Plasticity index (PI) was found to decrease noticeably with use of CCR only while further reductions in PI were achieved after the RHA incorporation. Clear variations in the microstructure of the treated soil were revealed from SEM testing approving the creation of cementitious products. The results of the current study indicated that the wastes utilized in this investigation could be potentially used as alternatives to the conventional binders and final disposition with economic and environmental advantages.

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1383
Author(s):  
Hanliang Liu ◽  
Bimin Zhang ◽  
Xueqiu Wang ◽  
Zhixuan Han ◽  
Baoyun Zhang ◽  
...  

In recent years, mineral resources near the surface are becoming scarce, causing focused mineral exploration on concealed deposits in covered terrains. In northern China, covered terrains are widespread and conceal bedrock sequences and mineralization. These represent geochemical challenges for mineral exploration in China. As a deep-penetrating geochemical technology that can reflect the information of deep anomalies, the fine-grained soil prospecting method has achieved ideal test results in arid Gobi Desert covered terrain, semi-arid grassland covered terrain, and alluvium soil covered terrain of northern China. The anomaly range indicated by the fine-grained soil prospecting method is very good with the known ore body location. The corresponding relationship can effectively indicate deep ore bodies and delineate anomalies in unknown areas. Overall, the fine-grained soil prospecting method can be applied to geochemical prospecting and exploration in covered terrains.


2015 ◽  
Vol 19 (73) ◽  
pp. 273-286
Author(s):  
A. Jafarishalkoohy ◽  
M. Vafaeian ◽  
M. A. Rowshanzamir ◽  
M. Mirmohammadsadeghi3 ◽  
◽  
...  

2018 ◽  
Vol 7 (2.1) ◽  
pp. 54
Author(s):  
Rama Subba Rao, G.V

Geotechnical engineering can noticeably affect the sustainability of infrastructure development because of its beginning place in the construction practice. Utilization of waste materials for enhancing properties of the soil is a wise choice and is also one step towards accomplishing sustainable development. Application of by-products (viz., flay ash and rice husk ash) which could be defined as “sustainable materials”, find special place in the modern-day soil stabilization and modification exercise. The preset paper aims at enhancing properties of expansive soil with inclusion of industrial by-products namely Rice Husk ash and Fly Ash. Further the present paper focuses on improving geotechnical characteristics of fine sand upon reinforcing with ground shredded rubber tire. Fine sand has a low angle of internal friction and which in turn has low shear strength. Reuse of waste materials is one area of research which attempts to makes geotechnical engineering practice sustainable.  


2018 ◽  
Vol 195 ◽  
pp. 03011
Author(s):  
Niken Silmi Surjandari ◽  
Raden Harya Dananjaya ◽  
Ely Jauharotus S

High plasticity clay has several problems including a high plasticity index and low bearing capacity. Stabilization of high plasticity clay is still extensively explored, especially for a low-cost and easily obtainable material. The purpose of this research is to study the effect of eggshell powder (ESP) on high plasticity clay. This research uses a soil sample obtained from Jenggrik Village, Ngawi Regency, East Java. Furthermore, the problematic soils at liquidity index of 0 - 1.25 are mixed with the ESP in various percentages, i.e. 0%, 10%, 15%, 20%. Several laboratory tests have been conducted to examine the effects of the mixtures, such as index properties, unconfined compressive strength and Scanning Electron Microscopy (SEM). The result indicates that the liquidity index affects the soil stabilized by ESP. SEM test results show that the soil structure changes, it becomes dense on a mixture containing 10% ESP. The conclusion of this research is that the higher the liquidity, the lower the strength.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fatih Isik ◽  
R. Kagan Akbulut ◽  
A. Sahin Zaimoglu

AbstractThe use of waste materials in civil engineering applications has gained importance nowadays. Consuming limited natural resources and increasing waste disposal costs have led researchers to evaluate waste materials for different geotechnical applications. In this respect, some waste materials are used as reinforcement in soils to improve their engineering properties. The main objective of this paper was to investigate the usability of waste polypropylene fiber as a reinforcement material in high plasticity fine-grained soils. For this purpose, waste toothbrush bristle (WTB) was used as a polypropylene fiber reinforcement material and added to fine-grained soil at ratios of 0.2%, 0.4%, 0.6% and 0.8% by dry total weight. The effect of WTB on freezing–thawing behavior and unconfined compression strength of unreinforced and reinforced clayey soil was evaluated. The results indicated that addition of WTB to high plasticity clay improved its behavior against freezing–thawing. Also, undrained shear strength increases with respect to increment in WTB ratio.


2021 ◽  
Vol 10 (1) ◽  
pp. 001-006
Author(s):  
Necmi Yarbaşı ◽  
Ekrem Kalkan

This paper evaluates the use of waste material mixtures including marble dust and scrap tire rubber the stabilization of fine-grained soils in order to remove the effects of freeze-thaw cycles. In this study, a fine-grained soil material was stabilized by using waste material mixtures. Natural and stabilized fine-grained soil samples were subjected to freeze-thaw cycles under different curing periods. After the freeze-thaw cycles, compressive strength tests were performed to investigate effects of waste material mixtures on the freeze-thaw resistance of fine-grained soil samples. The experimental results showed that the samples of fine-grained soil stabilized with waste material mixtures have high freeze-thaw durability as compared to unstabilized fine-grained soil samples. Consequently, we conclude that waste material mixtures including marble dust and scrap tire rubber, can be successfully used as an additive material to enhance the freeze-thaw durability of fine-grained soils for soil stabilization in the geotechnical applications.


2020 ◽  
Vol 9 (12) ◽  
pp. 158-163
Author(s):  
Necmi Yarba ◽  
Ekrem Kalkan

This paper evaluates the use of waste material mixtures including marble dust and scrap tire rubber the stabilization of fine-grained soils in order to remove the effects of freeze-thaw cycles. In this study, a fine-grained soil material was stabilized by using waste material mixtures. Natural and stabilized fine-grained soil samples were subjected to freeze-thaw cycles under different curing periods. After the freeze-thaw cycles, compressive strength tests were performed to investigate effects of waste material mixtures on the freeze-thaw resistance of fine-grained soil samples. The experimental results showed that the samples of fine-grained soil stabilized with waste material mixtures have high freeze-thaw durability as compared to unstabilized fine-grained soil samples. Consequently, we conclude that waste material mixtures including marble dust and scrap tire rubber, can be successfully used as an additive material to enhance the freeze-thaw durability of fine-grained soils for soil stabilization in the geotechnical applications.


2013 ◽  
Vol 824 ◽  
pp. 29-36 ◽  
Author(s):  
Manasseh Joel ◽  
Joseph E. Edeh

Laterite was treated with calcium carbide waste and lime as the control, to ascertain its modification and stabilization potential, in incremental order of 2% up to 10 %. Atterbergs limits test, compaction test, California bearing ratio (CBR) and unconfined compressive strength (UCS) test was performed on laterite treated with both additives. The use of χ2test to compare results of tests, showed that there is no significant difference between the modification potential of both additive as reflected in χ2values of 1.293, 0.995 and 0.650 obtained from the comparison of liquid limit, plastic limit and plasticity index test results. However difference was observed with CBR and 7 day UCS test results as χ2values of 13.75 and 11.64 respectively were higher than the standard value of 9.49 obtained from statistical Table at 4 degree of freedom and 5 % level of significance. Based on result of tests, calcium carbide waste is recommended for use in soil modification and stabilization, as usage will provide an effective way of disposing calcium carbide waste.


Sign in / Sign up

Export Citation Format

Share Document