scholarly journals The effect of egg shell powder on the compression strength of fine-grained soil

2018 ◽  
Vol 195 ◽  
pp. 03011
Author(s):  
Niken Silmi Surjandari ◽  
Raden Harya Dananjaya ◽  
Ely Jauharotus S

High plasticity clay has several problems including a high plasticity index and low bearing capacity. Stabilization of high plasticity clay is still extensively explored, especially for a low-cost and easily obtainable material. The purpose of this research is to study the effect of eggshell powder (ESP) on high plasticity clay. This research uses a soil sample obtained from Jenggrik Village, Ngawi Regency, East Java. Furthermore, the problematic soils at liquidity index of 0 - 1.25 are mixed with the ESP in various percentages, i.e. 0%, 10%, 15%, 20%. Several laboratory tests have been conducted to examine the effects of the mixtures, such as index properties, unconfined compressive strength and Scanning Electron Microscopy (SEM). The result indicates that the liquidity index affects the soil stabilized by ESP. SEM test results show that the soil structure changes, it becomes dense on a mixture containing 10% ESP. The conclusion of this research is that the higher the liquidity, the lower the strength.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fatih Isik ◽  
R. Kagan Akbulut ◽  
A. Sahin Zaimoglu

AbstractThe use of waste materials in civil engineering applications has gained importance nowadays. Consuming limited natural resources and increasing waste disposal costs have led researchers to evaluate waste materials for different geotechnical applications. In this respect, some waste materials are used as reinforcement in soils to improve their engineering properties. The main objective of this paper was to investigate the usability of waste polypropylene fiber as a reinforcement material in high plasticity fine-grained soils. For this purpose, waste toothbrush bristle (WTB) was used as a polypropylene fiber reinforcement material and added to fine-grained soil at ratios of 0.2%, 0.4%, 0.6% and 0.8% by dry total weight. The effect of WTB on freezing–thawing behavior and unconfined compression strength of unreinforced and reinforced clayey soil was evaluated. The results indicated that addition of WTB to high plasticity clay improved its behavior against freezing–thawing. Also, undrained shear strength increases with respect to increment in WTB ratio.


Author(s):  
Ömür Çimen ◽  
Mehmet Saltan ◽  
S. Nilay Keskin

AbstractHigh-plasticity clayey subgrade, which is unsuitable for road construction, may sometimes occur along highway routes. In such cases, engineers need to change the route of a highway project, resulting in an increase in road length and project costs. In this study, waste pumice was examined for stabilization of high-plasticity clayey subgrade, which is inappropriate for road construction. For this purpose, the physical and index properties of clay and pumice were determined. Then, the pumice was mixed with high plasticity clay at different ratios by weight. By performing standard Proctor compaction tests on the mixtures, the effects of adding pumice on compaction were also studied. Unconfined compression tests and California bearing ratio (CBR) tests were performed on all pumice-clay mixtures, and the test results and the CBR ratios were compared for each sample, respectively. The results showed that pumice stabilization improved the mechanical properties and reduced the swelling potential of high plasticity clayey subgrade.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1383
Author(s):  
Hanliang Liu ◽  
Bimin Zhang ◽  
Xueqiu Wang ◽  
Zhixuan Han ◽  
Baoyun Zhang ◽  
...  

In recent years, mineral resources near the surface are becoming scarce, causing focused mineral exploration on concealed deposits in covered terrains. In northern China, covered terrains are widespread and conceal bedrock sequences and mineralization. These represent geochemical challenges for mineral exploration in China. As a deep-penetrating geochemical technology that can reflect the information of deep anomalies, the fine-grained soil prospecting method has achieved ideal test results in arid Gobi Desert covered terrain, semi-arid grassland covered terrain, and alluvium soil covered terrain of northern China. The anomaly range indicated by the fine-grained soil prospecting method is very good with the known ore body location. The corresponding relationship can effectively indicate deep ore bodies and delineate anomalies in unknown areas. Overall, the fine-grained soil prospecting method can be applied to geochemical prospecting and exploration in covered terrains.


ASTONJADRO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 301
Author(s):  
Soewignjo Agus Nugroho ◽  
Ferry Fatnanta ◽  
Muhammad Faizal Alridho

<p>Cement and lime are widely used as stabilizing agents for soft clays. Some pozzolanic materials have also been used as additives such as asphalt, geosta, fly ash (geopolymer), base ash, salt. Industrial waste such as rice husk ash, coal burning ash (geopolymer) is also used as an alternative for stabilization materials. This research aims to study the effect of sawdust ash, as wood waste, to replace cement and lime on the stabilization of high plasticity clay. The effectiveness of sawdust ash, in this study, was evaluated from the CBR value. The test samples were also reviewed under conditions with and without immersion and with and without curing. Based on the test results, lime is very effective as an additive because it increases the CBR value of more than 100 at a level of 10%. Wood husk ash also increases the CBR value by 100%. The use of cement, lime and wood husk ash requires curing time so that there is a strong bond between the clay and additives. The use of additives without curing did not increase the CBR value. In the stabilization of clay with 10% lime, replacement of lime with wood husk ash by 4%-6%, can be used as a road sub-grade with good quality.</p>


2015 ◽  
Vol 802 ◽  
pp. 272-276
Author(s):  
Amira Azhar ◽  
Chee Ming Chan

Dredged marine soils (DMS) are considered as wastes and are currently not being recycled. Solidification of DMS needs to be undertaken before the materials can be reused.This study focused on the development of strength of three solidified fine-grained DMS which are high plasticity clay (CH), high plasticity silt (MH) and low plasticity silt (ML) admixed with cement and bottom ash. This paper discussed the effect of water-binder ratio and curing period on the strength development of the solidified DMS. The results show that the strength increased with prolonged curing. The strength increased when the water-binder ratio was decreased. CH samples with water-binder (w/b) ratio =1 has the highest strength that are up to 4.7 MPa. Optimal w/b ratio for solidified DMS is w/b=3.


2020 ◽  
Vol 57 (6) ◽  
pp. 933-938
Author(s):  
Nilo Cesar Consoli ◽  
Eduardo José Bittar Marin ◽  
Rubén Alejandro Quiñónez Samaniego ◽  
Hugo Carlos Scheuermann Filho ◽  
Nuno Miguel Cordeiro Cristelo

Fine-grained soils, due to their high plasticity, possess great shrinkage potential and high compressibility and are responsible for very substantial maintenance costs during the service life of the associated infrastructures. Stabilization of such soils with lime is one of the most effective procedures to mitigate these undesirable characteristics and, at the same time, to enhance their mechanical properties. Current research seeks, through field and laboratory tests, to quantify the influence of calcitic hydrated lime on the strength and deflection characteristics clayey soil from the Paraguayan region of Chaco. The influence of different dry unit weights, lime amounts, and curing periods on the strength and deflection of a Paraguayan clay stabilized with lime was assessed. The present work shows, for the first time ever, that the porosity/lime index is the proper parameter to be used in the field when dealing with the strength of clay–lime bases of pavements. Hence, the results presented herein are a contribution to understanding the conditions in which these soils can be stabilized to be used in infrastructural applications.


2020 ◽  
Vol 6 (6) ◽  
pp. 1114-1123 ◽  
Author(s):  
Hassnen Mosa Jafer ◽  
Zaid Hameed Majeed ◽  
Anmar Faleh Dulaimi

The present experimental work briefly aimed to utilize two different waste materials; calcium carbide residue (CCR) and the locally available rice husk ash (RHA) to produce an eco-friendly binder for the use in fine-grained soil stabilization. The effect of different binary mixtures, produced by mixing CCR and RHA with different proportion, on the geotechnical properties of a fine-grained soil was investigated. For the unconfined compressive strength (UCS) test, the soil specimens were subjected to various curing periods (7, 21, 28 and 90 days). The microstructure of the soil treated with the optimum mixture was carried out by utilizing scanning electron microscopy (SEM) test. Results of UCS test showed an interesting growth after the treatment of binary mixtures relative to those samples treated with only CCR.  Plasticity index (PI) was found to decrease noticeably with use of CCR only while further reductions in PI were achieved after the RHA incorporation. Clear variations in the microstructure of the treated soil were revealed from SEM testing approving the creation of cementitious products. The results of the current study indicated that the wastes utilized in this investigation could be potentially used as alternatives to the conventional binders and final disposition with economic and environmental advantages.


2012 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Sumiyanto Sumiyanto ◽  
Arwan Apriyono

<p>Highway built on high plasticity clay will be easily damaged by groundshrinkage flower essence. Stabilization of clayby mixing lime is a repairement method that has been proven quite effective. However, this method is difficult to be applied in existing  road because demolition must be done. Stabilization of clay using lime solution injection is the method proposed toovercome the  problems of expansive clay under the existing highway, therefore demolition is not required. This study was conducted to obtain  effective parameters influencing the distance lime solution injection sites and time required for complete stabilization process. This research was conductedin labotarorium by injection experiments. Test results shows indications of soil plasticity decrease, especially  the value of plasticity index (PI) and liquid limit (LL). PI decreases from 24.74% to 19.5% and LL decrease from 52.32% to 45%. Based on data analysis it appears that the time required for complete lime solution injection (effective time) has not been obtained in  this test. Based on test data, until the day 28 value of soil plasticity index is still low. In this study obtained effective distance influencing the injectionsolution of lime is 100 cm. The distance is still need to be enlarged by increasing the high pressure.</p>


2008 ◽  
Vol 45 (2) ◽  
pp. 252-265 ◽  
Author(s):  
Valéry Ferber ◽  
Jean-Claude Auriol ◽  
Yu-Jun Cui ◽  
Jean-Pierre Magnan

Wetting-induced deformations of compacted fine-grained soils are of particular interest in earthworks engineering, where embankment design needs to take into account potential future water-content variations. The influence of compaction rate on swelling potential and, more generally, wetting-induced deformations are analyzed in this paper on the basis of an original physical microstructural model. The interpretation of macroscopic experimental results obtained on a high-plasticity clay and a silty clay shows that the model enables quantitative description of intra- and inter-aggregate pore volume changes due to wetting. Using this approach, a fundamental difference was observed between the high-plasticity clay and the silty clay in wetting tests under vertical stress: tests performed on the high-plasticity clay can be analyzed using a microstructural model, whereas this model is not relevant for the analysis of silty clay behaviour, which is better interpreted in the framework of a conventional elastoplastic model. The interpretations were compared to microstructure observations, which support the main tendencies deduced from the model.


Sign in / Sign up

Export Citation Format

Share Document