scholarly journals Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1383
Author(s):  
Hanliang Liu ◽  
Bimin Zhang ◽  
Xueqiu Wang ◽  
Zhixuan Han ◽  
Baoyun Zhang ◽  
...  

In recent years, mineral resources near the surface are becoming scarce, causing focused mineral exploration on concealed deposits in covered terrains. In northern China, covered terrains are widespread and conceal bedrock sequences and mineralization. These represent geochemical challenges for mineral exploration in China. As a deep-penetrating geochemical technology that can reflect the information of deep anomalies, the fine-grained soil prospecting method has achieved ideal test results in arid Gobi Desert covered terrain, semi-arid grassland covered terrain, and alluvium soil covered terrain of northern China. The anomaly range indicated by the fine-grained soil prospecting method is very good with the known ore body location. The corresponding relationship can effectively indicate deep ore bodies and delineate anomalies in unknown areas. Overall, the fine-grained soil prospecting method can be applied to geochemical prospecting and exploration in covered terrains.

2014 ◽  
Vol 1022 ◽  
pp. 7-13
Author(s):  
Zhao Wu ◽  
Jian Ping Chen ◽  
Meng Long Xu

By analyzing metallogenic regulation of the deep skarn ore bodies in Laochang ore field,3D metallogenic features model was established with 3D visualization technology. With “the cubic predicting model” method, the major ore-controlling factors in deep include granites, strata, faults and chemical elements abnormal. We delineated prospect area and outlined ten targets through evidence weight method. Calculating the ore-containing probabilities and the quantities of mineral resources ,it realized prediction of mineral resources on quantity, position and probability. It is important for deep mineral exploration of Laochang ore field in Ge jiu.


1997 ◽  
Vol 61 (407) ◽  
pp. 531-541 ◽  
Author(s):  
M. J. Le Bas ◽  
B. Spiro ◽  
Yang Xueming

AbstractThe large Fe-Nb-REE deposit at Bayan Obo is hosted by a dolomite marble within the thrust complex of marbles, quartzites and slates that belongs to the Bayan Obo Formation of mid-Proterozoic age. The dolomite is either a dolomitized sedimentary limestone subsequently mineralized and tectonically thrust and folded, or a dolomite (or dolomitized) carbonatite intrusion with late-stage recrystallization and mineralization that has been subsequently tectonically deformed.O and C isotope data indicate that the sedimentary limestones and dolomites of the Bayan Obo Formation, which occur in the thrust stack together with quartzites and slates, have values of δO c. +20 per mil (SMOW) and δC c. zero. In contrast, the coarser grained facies of the large (0.5 × 10 km) dolomite marble which hosts the REE ore body has δO per mil values between +8 and +12 and δC values between −5 and −3, whereas the finer-grained recrystallized and REE-mineralized dolomite marble which occurs close to the ore bodies has δO between +12 to +16 and δC between −4 and zero. 87Sr/86Sr data confirm this distinction: >0.710 for the sedimentary rocks and <0.704 for the coarse- and fine-grained dolomite marbles.These data are taken to indicate that the large and coarse-grained dolomite was an igneous carbonatite (as borne out by its fenitic contact rocks and trace element geochemistry), and that the finer grained dolomite recrystallized under the influence of mineralizing solutions which entrained groundwater. The stratiform features in the coarse-grained dolomite that are evident in the field are interpreted as tectonic layering.


2018 ◽  
Vol 195 ◽  
pp. 03011
Author(s):  
Niken Silmi Surjandari ◽  
Raden Harya Dananjaya ◽  
Ely Jauharotus S

High plasticity clay has several problems including a high plasticity index and low bearing capacity. Stabilization of high plasticity clay is still extensively explored, especially for a low-cost and easily obtainable material. The purpose of this research is to study the effect of eggshell powder (ESP) on high plasticity clay. This research uses a soil sample obtained from Jenggrik Village, Ngawi Regency, East Java. Furthermore, the problematic soils at liquidity index of 0 - 1.25 are mixed with the ESP in various percentages, i.e. 0%, 10%, 15%, 20%. Several laboratory tests have been conducted to examine the effects of the mixtures, such as index properties, unconfined compressive strength and Scanning Electron Microscopy (SEM). The result indicates that the liquidity index affects the soil stabilized by ESP. SEM test results show that the soil structure changes, it becomes dense on a mixture containing 10% ESP. The conclusion of this research is that the higher the liquidity, the lower the strength.


2018 ◽  
Vol 14 (15) ◽  
pp. 1
Author(s):  
Sirelda Bele

Munella's deposit is one of the most important mineral deposits of Albania. It is rich in mineral resources such as copper, zinc, gold, etc. For this reason Geological 3D modeling is very important because it gives detailed information on management in the most optimal way to mine. In this article, 3D modeling of copper bodies was carried out through modeling software using the implicit method. This method uses advanced algorithms that are Polyharmonic Radial Basis Functions (RBF) generates the best surface area of the ore that can have some Z values and can perfectly customize the incomplete surfaces by utilizing 211 drilling data. The ore bodies that are created with this method are divided into blocks that represent the distribution of copper in%. The results achieved in this study provide an accurate overview of the most important sources of deposits and major concentrations of copper for the efficient management and exploitation of the mine.


Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 971-986 ◽  
Author(s):  
D. Livelybrooks ◽  
M. Mareschal ◽  
E. Blais ◽  
J. T. Smith

A magnetotelluric (MT) survey was carried out on the western flank of the Sudbury Structure (Ontario, Canada) over a recently discovered ore body to test the potential of the method as a reconnaissance tool for deep mineral exploration. The observed responses exhibit a large phase anomaly (exceeding 75° in some places) centered over the ore body, which is interpreted as arising from a combination of 3-D induction and current channeling. Impedance decomposition methods were used to define frequency ranges in which the response is quasi 2-D with geologically plausible strike values. Two‐dimensional rapid relaxation inversions of the data, where appropriate, generated quantitative models in good agreement with known parameters of the ore body. Two‐dimensional inversions, however, cannot replicate either the size or the peculiar nature of the observed phase anomaly. Therefore 3-D modeling trials were undertaken, which best explain the MT responses in terms of 3-D induction within the Trillabelle body coupled with current channeling through neighboring faults. An important conclusion of these trials is that isolated, deep, highly conductive ore bodies may not be observable using MT. Prospects for their detection appear to improve when they are linked with regional, current gathering features such as conductive faults, or a larger‐scale, alteration or dissemination halo.


2020 ◽  
Vol 6 (6) ◽  
pp. 1114-1123 ◽  
Author(s):  
Hassnen Mosa Jafer ◽  
Zaid Hameed Majeed ◽  
Anmar Faleh Dulaimi

The present experimental work briefly aimed to utilize two different waste materials; calcium carbide residue (CCR) and the locally available rice husk ash (RHA) to produce an eco-friendly binder for the use in fine-grained soil stabilization. The effect of different binary mixtures, produced by mixing CCR and RHA with different proportion, on the geotechnical properties of a fine-grained soil was investigated. For the unconfined compressive strength (UCS) test, the soil specimens were subjected to various curing periods (7, 21, 28 and 90 days). The microstructure of the soil treated with the optimum mixture was carried out by utilizing scanning electron microscopy (SEM) test. Results of UCS test showed an interesting growth after the treatment of binary mixtures relative to those samples treated with only CCR.  Plasticity index (PI) was found to decrease noticeably with use of CCR only while further reductions in PI were achieved after the RHA incorporation. Clear variations in the microstructure of the treated soil were revealed from SEM testing approving the creation of cementitious products. The results of the current study indicated that the wastes utilized in this investigation could be potentially used as alternatives to the conventional binders and final disposition with economic and environmental advantages.


2020 ◽  
Vol 118 ◽  
pp. 103216 ◽  
Author(s):  
Xi-An Yang ◽  
Jie Wu ◽  
Ian M. Coulson ◽  
Jinzhang Zhang ◽  
Xiaodan Lai ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 7737
Author(s):  
Amin Soltani ◽  
Mahdieh Azimi ◽  
Brendan C. O’Kelly

This study aims at modeling the compaction characteristics of fine-grained soils blended with sand-sized (0.075–4.75 mm) recycled tire-derived aggregates (TDAs). Model development and calibration were performed using a large and diverse database of 100 soil–TDA compaction tests (with the TDA-to-soil dry mass ratio ≤ 30%) assembled from the literature. Following a comprehensive statistical analysis, it is demonstrated that the optimum moisture content (OMC) and maximum dry unit weight (MDUW) for soil–TDA blends (across different soil types, TDA particle sizes and compaction energy levels) can be expressed as universal power functions of the OMC and MDUW of the unamended soil, along with the soil to soil–TDA specific gravity ratio. Employing the Bland–Altman analysis, the 95% upper and lower (water content) agreement limits between the predicted and measured OMC values were, respectively, obtained as +1.09% and −1.23%, both of which can be considered negligible for practical applications. For the MDUW predictions, these limits were calculated as +0.67 and −0.71 kN/m3, which (like the OMC) can be deemed acceptable for prediction purposes. Having established the OMC and MDUW of the unamended fine-grained soil, the empirical models proposed in this study offer a practical procedure towards predicting the compaction characteristics of the soil–TDA blends without the hurdles of performing separate laboratory compaction tests, and thus can be employed in practice for preliminary design assessments and/or soil–TDA optimization studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fu-Qing Cui ◽  
Wei Zhang ◽  
Zhi-Yun Liu ◽  
Wei Wang ◽  
Jian-bing Chen ◽  
...  

The comprehensive understanding of the variation law of soil thermal conductivity is the prerequisite of design and construction of engineering applications in permafrost regions. Compared with the unfrozen soil, the specimen preparation and experimental procedures of frozen soil thermal conductivity testing are more complex and challengeable. In this work, considering for essentially multiphase and porous structural characteristic information reflection of unfrozen soil thermal conductivity, prediction models of frozen soil thermal conductivity using nonlinear regression and Support Vector Regression (SVR) methods have been developed. Thermal conductivity of multiple types of soil samples which are sampled from the Qinghai-Tibet Engineering Corridor (QTEC) are tested by the transient plane source (TPS) method. Correlations of thermal conductivity between unfrozen and frozen soil has been analyzed and recognized. Based on the measurement data of unfrozen soil thermal conductivity, the prediction models of frozen soil thermal conductivity for 7 typical soils in the QTEC are proposed. To further facilitate engineering applications, the prediction models of two soil categories (coarse and fine-grained soil) have also been proposed. The results demonstrate that, compared with nonideal prediction accuracy of using water content and dry density as the fitting parameter, the ternary fitting model has a higher thermal conductivity prediction accuracy for 7 types of frozen soils (more than 98% of the soil specimens’ relative error are within 20%). The SVR model can further improve the frozen soil thermal conductivity prediction accuracy and more than 98% of the soil specimens’ relative error are within 15%. For coarse and fine-grained soil categories, the above two models still have reliable prediction accuracy and determine coefficient (R2) ranges from 0.8 to 0.91, which validates the applicability for small sample soils. This study provides feasible prediction models for frozen soil thermal conductivity and guidelines of the thermal design and freeze-thaw damage prevention for engineering structures in cold regions.


Sign in / Sign up

Export Citation Format

Share Document