scholarly journals Utilization of Microalgae in Aquaculture System: Biological Wastewater Treatment

2019 ◽  
Vol 3 (4) ◽  
pp. 209-221 ◽  
Author(s):  
Kyochan Kim ◽  
Joo-Young Jung ◽  
Hyon-Sob Han

We recently developed an autotrophic biofloc technology (ABFT) system entailing simultaneous microalgae co-culturing with juvenile-farming-stage fish and shrimp in aquaculture and microalgae-based water treatment. The present study was conducted to confirm the potentialities of the ABFT system at the remaining stages (seedling to adult farming, Nile tilapia) for industrial-level implementation. In the results at the seedling stage, an excellent water-purification effect and significant water conservation (97% reduction) by microalgae were verified. Indeed, among the fish, there were not any significant differences, either in growth performance or in body composition, and the wastewater from this system was recycled by use for the growth of various plants. Further, the ABFT system was demonstrated to have a positive effect on production economics by simplifying the production process steps (simultaneous fish breeding and wastewater treatment) and providing for a natural hatching environment. In summary, the ABFT system can be integrated with existing systems on an industrial level as an effective and efficient means of achieving sustainable aquaculture.

2019 ◽  
Vol 11 (4) ◽  
pp. 335-346 ◽  
Author(s):  
Hamilton Hisano ◽  
Phillipe T. L. Barbosa ◽  
Liliam A. Hayd ◽  
Cristiano C. Mattioli

Abstract Biofloc technology system (BFT), recirculation aquaculture system (RAS) and polyculture promote efficient use of water, area and nutrient recycling, which are essential practices for sustainable aquaculture development. The aim of this study was to evaluate the growth, feed efficiency, biofloc composition and water quality of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) in monoculture and polyculture with giant freshwater prawn Macrobrachium rosenbergii (De Man, 1906) in BFT and RAS, over a period of 30 days. Fish (n = 128; 7.29 ± 0.67 g) were distributed randomly in 16 experimental tanks (8 fish/tank). Prawn (n = 96; 0.50 ± 0.09 g) were allocated in 8 experimental tanks (12 prawn/tank) in a polyculture. The experimental design was completely randomized with four treatments with four replicates each, in a factorial design 2 × 2 (BFT and RAS vs. monoculture and polyculture). The experimental diet (28% of digestible protein; 3100 kcal kg−1 of digestible energy) was used both to fish and prawn in BFT and RAS. There was significant effect (p < 0.01) of the system and the culture for weight gain, apparent feed conversion and protein efficiency ratio. The average weight gain and apparent feed conversion of tilapia in monoculture (30.04 g and 1.39) and in polyculture (36.44 g and 1.27) were superior (p < 0.01) in BFT than in monoculture (23.64 g and 1.74) and in polyculture (24.14 g and 1.61) in RAS. Weight gain and survival of giant freshwater prawn was superior (p < 0.01) in BFT (0.43 g and 87%) compared to RAS (0.26 g and 79%). The data showed that BFT provides better growth performance responses in monoculture for Nile tilapia and in polyculture with giant freshwater prawn compared to RAS.


Aquaculture ◽  
2021 ◽  
Vol 536 ◽  
pp. 736497
Author(s):  
Moisés Angel Poli ◽  
Mateus Aranha Martins ◽  
Scheila Anelise Pereira ◽  
Gabriel Fernandes Alves Jesus ◽  
Maurício Laterça Martins ◽  
...  

2016 ◽  
Vol 8 (7) ◽  
pp. 592 ◽  
Author(s):  
Puchong Sri-uam ◽  
Seri Donnuea ◽  
Sorawit Powtongsook ◽  
Prasert Pavasant

2018 ◽  
Vol 49 (11) ◽  
pp. 3658-3668 ◽  
Author(s):  
Jorge Alberto Pérez-Fuentes ◽  
Carlos Iván Pérez-Rostro ◽  
Martha Patricia Hernández-Vergara ◽  
María del Carmen Monroy-Dosta

2004 ◽  
Vol 49 (1) ◽  
pp. 147-154
Author(s):  
R.M. Ramírez Zamora ◽  
A. Chávez Mejía ◽  
R. Domínguez Mora ◽  
A. Durán Moreno

The feasibility of using basaltic dust as a flocculant additive or coagulant aid for wastewater treatment was assessed in this research. The experimental study was divided into two stages: 1) physicochemical characterisation of the basaltic dust by applying standardised techniques, and 2) evaluation of this material as flocculant additive for the coagulation-flocculation of wastewater treated for reuse. Coagulation-flocculation experiments were carried out in the laboratory with a mixture of industrial and municipal wastewater samples collected from two points of the final discharge of the Mexico City sewerage system. Aluminium sulphate and lime were used as coagulants and the basaltic dust as flocculant additive, by applying the jar-test technique. The results of the corrosivity, reactivity, explosiveness, toxicity, inflammability and biological risk tests indicated that this material is classified as a non-hazardous waste (according to the Mexican legislation, NOM-052-ECOL-1993). The density, oxide content and particle size values of basaltic dust were similar to those reported for the flocculant additive denominated activated silica. The jar test results showed a positive effect of basaltic dust over the effluent and sludge qualities, to the extent that coagulant doses can be reduced 30% (from 150 mg/L to 110 mg/L of Al2(SO4)3).


Sign in / Sign up

Export Citation Format

Share Document