scholarly journals Aerodynamic Performance Analysis of a Modified Joukowsky Airfoil: Parametric Control of Trailing Edge Thickness

2021 ◽  
Vol 11 (18) ◽  
pp. 8395 ◽  
Author(s):  
Pan Xiong ◽  
Lin Wu ◽  
Xinyuan Chen ◽  
Yingguang Wu ◽  
Wenjun Yang

In order to ensure the blade strength of large-scale wind turbine, the blunt trailing edge airfoil structure is proposed, aiming at assessing the impact of the trailing edge shape on the flow characteristics and airfoil performance. In this paper, a Joukowsky airfoil is modified by adding the tail thickness parameter K to achieve the purpose of accurately modifying the thickness of the blunt tail edge of the airfoil. Using Ansys Fluent as a tool, a large eddy simulation (LES) model was used to analyze the vortex structure of the airfoil trailing edge. The attack angles were used as variables to analyze the aerodynamic performance of airfoils with different K-values. It was found that when α = 0°, α = 4°, and α = 8°, the lift coefficient and lift–drag ratio increased with increasing K-value. With the increase in the angle of attack from 8° to 12°, the lift–drag ratio of the airfoil with the blunt tail increased from +70% to −7.3% compared with the original airfoil, which shows that the airfoil with the blunt trailing edge has a better aerodynamic performance at a small angle of attack. The aerodynamic characteristics of the airfoil are affected by the periodic shedding of the wake vortex and also have periodic characteristics. By analyzing the vortex structure at the trailing edge, it was found that the value of K can affect the size of the vortex and the position of vortex generation/shedding. When α = 0°, α = 4°, and α = 8°, the blunt trailing edge could improve the aerodynamic performance of the airfoil; when α = 12°, the position of vortex generation changed, which reduced the aerodynamic performance of the airfoil. Therefore, when designing the trailing edge of an airfoil, the thickness of the trailing edge can be designed according to the specific working conditions. It can provide valuable information for the design and optimization of blunt trailing edge airfoil.

2021 ◽  
Vol 2 (4) ◽  
pp. 293-305
Author(s):  
Mohammad Mahdi Mahzoon ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift. Doi: 10.28991/HIJ-2021-02-04-03 Full Text: PDF


2021 ◽  
Author(s):  
Stephen D. Sharp

Aircraft today use discrete control surface, typically mounted using pin and sliding joints. These designs can lead to high part-count assemblies and backlash within the assemblies that require lubrication and frequent maintenance. These wing designs also feature fixed dimensions and do not allow for geometry changes mid-flight. These limitations lead to a compromised design that must work relatively well in all situations. This causes inefficiencies in all stages of flight. The Wright brothers, who achieved the first successful powered flight did not use these techniques. Instead they used a system on cables to apply tension and bend the wings to changes their angle of attack. They called this technique wing warping. As aviation advanced it quickly moved from the wing-warping technique towards the discrete element control surfaces. However, there is renewed interest in techniques such as wing warping as the idea of morphing wings becomes more prevalent in aerospace research. Morphing wings would allow for changing major characteristics, such as camber, span, sweep, etc. of the wing mid-flight and allow for continuous optimization through all stages of its mission. The design covered in this thesis was centered around camber morphing of the wing in flight. Biomimicry played a large role in the design, with research into the skeletal systems of birds and fish used to dictate the rib structures. This bio-inspired path led to the use of compliant mechanisms for the ribs. This choice allowed for a low part-count and zero-backlash design that would require no maintenance and have a very long service life due to an extremely low amount of fatigue. Several design iterations were tested with different common desktop 3-D printing materials. The final rib design was made of PETG and whose compliant shape was directly inspired by the skeletal structure of the spine of a fish. The design proved to be extremely reliable and robust. Skin design has long been one of the biggest hurdles of morphing wing design. Most research reviewed in this paper used an elastomer style skin that was pre-stretched to reduce buckling under compression. Through testing it was found that this method is difficult and unreliable to maintain a smooth and continuous surface. Even when pre-stretching, the elastomer would fatigue and buckle under compression. The final design was a PETG panel with a web and flange that would interact with the rib structure and was able to translate chordwise along the rib as the wing altered its camber. The skin had built-in flexures to reduce bending actuation forces. The wing also featured a rigid leading-edge skin panel with which the other skin panels would be able to slide under to maintain skin coverage under both extension and compression of the wing surfaces. This however led to aerodynamic problems that were discovered in the CFD analysis. The wing was prepared for CFD using finite element analysis to produced morphed wing bodies for a 0, 10, 20, and 30-degree trailing edge deflection angles. A model was also produced of the same base airfoil (NACA 0018) with a hinged flap of 30% chord length deflected by the same amount to serve as a performance benchmark for the morphing wing. The main criteria used to evaluate the performance were the lift, drag, and lift-to-drag ratios. For the 0⁰ tests, the morphing wing had up to almost 29% higher drag at high speeds. The results showed that the 10⁰ deflection tests found up to a 115% increase in lift over the hinged flap design and a lift-to-drag ratio of up to 161% higher for the morphing wing. The 20⁰ and 30⁰ tests saw the lift advantage of the morphing wing decrease but on average across all tests, the morphing wing had a lift coefficient higher than the hinged flap by 43%. Additionally, for the large deflection tests the hinged flap had up to a 60.5% advantage in lift-to-drag ratio. The computational fluid dynamic analysis showed that due to the larger effective angle of attack and the step-down in the skin of the morphing wing, at larger deflection angles the flow would separate much earlier along the chord. Therefore, based on the analysis, the morphing wing would create a substantial performance and efficiency gains when wing trailing edge deflection was kept below 20⁰. This meant it would be suitable for stages of flight such as takeoff and climb. Planned future work aims to reduce the 0⁰ drag of the morphing wing as well as the early flow separation at high angles of deflection. It is assumed, that by scaling up the wing, the proportion of the step size will decrease dramatically and as a result would improve the flow characteristics. Additionally, the placement and rotational limits of the flexures can be tested further to optimize the morphed shape to reduce the severity of the adverse pressure gradient along the upper surface when in high deflection states. With continued work on improving the flow separation, this design proves promising for even high-deflection cases. Overall the V4 rib design and the accompanying compliant skin panel design were very successful for their initial tests.


2021 ◽  
Author(s):  
Stephen D. Sharp

Aircraft today use discrete control surface, typically mounted using pin and sliding joints. These designs can lead to high part-count assemblies and backlash within the assemblies that require lubrication and frequent maintenance. These wing designs also feature fixed dimensions and do not allow for geometry changes mid-flight. These limitations lead to a compromised design that must work relatively well in all situations. This causes inefficiencies in all stages of flight. The Wright brothers, who achieved the first successful powered flight did not use these techniques. Instead they used a system on cables to apply tension and bend the wings to changes their angle of attack. They called this technique wing warping. As aviation advanced it quickly moved from the wing-warping technique towards the discrete element control surfaces. However, there is renewed interest in techniques such as wing warping as the idea of morphing wings becomes more prevalent in aerospace research. Morphing wings would allow for changing major characteristics, such as camber, span, sweep, etc. of the wing mid-flight and allow for continuous optimization through all stages of its mission. The design covered in this thesis was centered around camber morphing of the wing in flight. Biomimicry played a large role in the design, with research into the skeletal systems of birds and fish used to dictate the rib structures. This bio-inspired path led to the use of compliant mechanisms for the ribs. This choice allowed for a low part-count and zero-backlash design that would require no maintenance and have a very long service life due to an extremely low amount of fatigue. Several design iterations were tested with different common desktop 3-D printing materials. The final rib design was made of PETG and whose compliant shape was directly inspired by the skeletal structure of the spine of a fish. The design proved to be extremely reliable and robust. Skin design has long been one of the biggest hurdles of morphing wing design. Most research reviewed in this paper used an elastomer style skin that was pre-stretched to reduce buckling under compression. Through testing it was found that this method is difficult and unreliable to maintain a smooth and continuous surface. Even when pre-stretching, the elastomer would fatigue and buckle under compression. The final design was a PETG panel with a web and flange that would interact with the rib structure and was able to translate chordwise along the rib as the wing altered its camber. The skin had built-in flexures to reduce bending actuation forces. The wing also featured a rigid leading-edge skin panel with which the other skin panels would be able to slide under to maintain skin coverage under both extension and compression of the wing surfaces. This however led to aerodynamic problems that were discovered in the CFD analysis. The wing was prepared for CFD using finite element analysis to produced morphed wing bodies for a 0, 10, 20, and 30-degree trailing edge deflection angles. A model was also produced of the same base airfoil (NACA 0018) with a hinged flap of 30% chord length deflected by the same amount to serve as a performance benchmark for the morphing wing. The main criteria used to evaluate the performance were the lift, drag, and lift-to-drag ratios. For the 0⁰ tests, the morphing wing had up to almost 29% higher drag at high speeds. The results showed that the 10⁰ deflection tests found up to a 115% increase in lift over the hinged flap design and a lift-to-drag ratio of up to 161% higher for the morphing wing. The 20⁰ and 30⁰ tests saw the lift advantage of the morphing wing decrease but on average across all tests, the morphing wing had a lift coefficient higher than the hinged flap by 43%. Additionally, for the large deflection tests the hinged flap had up to a 60.5% advantage in lift-to-drag ratio. The computational fluid dynamic analysis showed that due to the larger effective angle of attack and the step-down in the skin of the morphing wing, at larger deflection angles the flow would separate much earlier along the chord. Therefore, based on the analysis, the morphing wing would create a substantial performance and efficiency gains when wing trailing edge deflection was kept below 20⁰. This meant it would be suitable for stages of flight such as takeoff and climb. Planned future work aims to reduce the 0⁰ drag of the morphing wing as well as the early flow separation at high angles of deflection. It is assumed, that by scaling up the wing, the proportion of the step size will decrease dramatically and as a result would improve the flow characteristics. Additionally, the placement and rotational limits of the flexures can be tested further to optimize the morphed shape to reduce the severity of the adverse pressure gradient along the upper surface when in high deflection states. With continued work on improving the flow separation, this design proves promising for even high-deflection cases. Overall the V4 rib design and the accompanying compliant skin panel design were very successful for their initial tests.


2019 ◽  
Author(s):  
Yong Peng ◽  
Jun Wang ◽  
Wei Wang ◽  
Guoqing Yin

Abstract. In this paper, the class-shape function transform (CST) parametric method is used to parameterize the airfoil configuration, and a new airfoil is randomly generated within a limited range. The 2D Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) solver is used to compute the quantities such as lift-to-drag ratio. The multi-objective genetic algorithm performs multi-objective optimization design on the airfoil plane shape to achieve high lift-to-drag ratio with low drag in operating ranges of angle of attack, and finally obtains the Pareto optimal solution set. The mixed function of index method is used to increase the thickness of the trailing edge of the airfoil. From the multi-objective solutions and blunt trailing edge solutions which represent the best trade-offs between the design objectives, one can select a set of airfoil shapes with a low relative drag force and with improved aerodynamic performance. Taking a typical airfoil NACA4418 as an example. The results show that the optimized airfoil has a better pressure distribution than the original airfoil, effectively increasing the lift coefficient and reducing the drag coefficient. After thickening the trailing edge of the optimized airfoil, the results show that the lift coefficient is improved at all angles of attack and the stall is delayed. And the blunt trailing edge airfoil has better lift-to-drag characteristics than the original airfoil and the optimized airfoil.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 959 ◽  
Author(s):  
Xinkai Li ◽  
Ke Yang ◽  
Xiaodong Wang

To explore the effect of the height of vortex generators (VGs) on the control effect of boundary-layer flow, the vortex characteristics of a plate and the aerodynamic characteristics of an airfoil for VGs were studied by both wind tunnel experiments and numerical methods. Firstly, the ratio of VG height (H) to boundary layer thickness (δ) was studied on a flat plate boundary layer; the values of H are 0.1δ, 0.2δ, 0.5δ, 1.0δ, 1.5δ, and 2.0δ. Results show that the concentrated vortex intensity and VG height present a logarithmic relationship, and vortex intensity is proportional to the average kinetic energy of the fluid in the height range of the VG. Secondly, the effects of height on the aerodynamic performance of airfoils were studied in a wind tunnel using three VGs with H = 0.66δ, 1.0δ, and 1.33δ. The stall angle of the airfoil with and without VGs is 18° and 8°, respectively, so the VGs increase the stall angle by 10°. The maximum lift coefficient of the airfoil with VGs increases by 48.7% compared with the airfoil without VGs, and the drag coefficient of the airfoil with VGs is 84.9% lower than that of the airfoil without VGs at an angle of attack of 18°. The maximum lift–drag ratio of the airfoil with VGs is lower than that of the airfoil without VGs, so the VGs do not affect the maximum lift–drag ratio of the airfoil. However, a VG does increase the angle of attack of the best lift–drag ratio.


2013 ◽  
Vol 13 (06) ◽  
pp. 1340022 ◽  
Author(s):  
WEIJUN TIAN ◽  
FANGYUAN LIU ◽  
QIAN CONG ◽  
YURONG LIU ◽  
LUQUAN REN

This paper demonstrates the design of the airfoil of small wind turbines, the bionic airfoil was inspired by the morphology of the swallow's extended wing. The wind tunnel tests on the bionic and standard airfoils NACA4412 were conducted, and the aerodynamic performances of the airfoils were numerically investigated. The results show that the bionic airfoil has better aerodynamic performance, the lift coefficient and lift-drag ratio are larger than those of the NACA4412; with the angle of attack increases, both the bionic and standard airfoils stall, but the stall characteristics of the bionic airfoil are better.


1989 ◽  
Vol 111 (1) ◽  
pp. 93-94 ◽  
Author(s):  
J. Katz ◽  
R. Largman

The aerodynamic performance of a two-element airfoil with a 90 deg. trailing edge flap was experimentally investigated. The 5 percent-chord long flap, significantly increased the lift of the baseline airfoil, throughout a wide range of angles of attack. The maximum lift coefficient of the flapped wing increased too, whereas the lift/drag ratio decreased.


Author(s):  
C. P. van Dam ◽  
A. Cooperman ◽  
A. McLennan ◽  
R. Chow ◽  
J. Baker

This paper addresses the primary concerns regarding the aerodynamic performance characteristics of thick airfoils with blunt trailing edges (or so-called flatback airfoils) and the utilization of these section shapes in the design of rotor blades for utility-scale wind turbines. Results from wind tunnel and computational fluid dynamic studies demonstrate the favorable impact of the blunt trailing edge on the aerodynamic performance characteristics including higher maximum lift coefficient and reduced sensitivity of lift to premature boundary layer transition. The negative effect of the blunt trailing edge on drag can be partially mitigated through simple trailing edge treatments such as splitter plates. Studies on the effect of these section shapes on wind turbine rotor performance show that at attached flow conditions this inboard blade modification does not adversely affect rotor torque output. Blade system design studies involving the collective optimization of aerodynamic performance, structural strength and weight, and manufacturing complexity demonstrate the overall favorable impact of the flatback concept.


Author(s):  
Nvzi Bao ◽  
Yehui Peng ◽  
Heying Feng ◽  
Chenghao Yang

Variable camber is an effective method for improving the flight efficiency of large aircraft, and has attracted the attention of researchers. This work focused on the optimization of a variable camber airfoil. First, the influences of the variable camber of the leading and trailing edges on the airfoil aerodynamic performance were investigated using a computational fluid dynamics numerical simulation. An initial database was established for a deep neural network. Second, an iterative algorithm was constructed to optimize the variable camber airfoil in terms of the rotation angle of the leading edge, deflection position of the leading edge, rotation angle of the trailing edge, and deflection position of the trailing edge. A genetic algorithm was used in each iteration to maximize the lift coefficient and lift-to-drag ratio, as predicted using a deep neural network (DNN). The optimal results were validated using Fluent. If the DNN result approximated the Fluent results, the iterative process was stopped. Otherwise, the Fluent results were inserted into the database to update the DNN prediction model. The optimization results showed that the lift-to-drag ratio of the 2D airfoil could be increased by more than 14 when the angle of attack was less than 8° relative to the original airfoil. Furthermore, to validate the 2D optimal results, the optimized 2D airfoil was stretched into 3D, and it was discovered that the aerodynamic performance trend of the 3D airfoil with respect to the angle of attack was basically the same as that of the 2D airfoil. In addition, the corresponding 3D airfoil improved the aerodynamic performance and reduced the noise at a high frequency (by approximately 16 dB). In contrast, the noise in the low and medium frequencies remained unchanged. Therefore, the optimization method and results can provide a reference for the aerodynamic design and acoustic design of large civil aircraft wings.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


Sign in / Sign up

Export Citation Format

Share Document