scholarly journals STUDY OF APOPTOTIC CHANGES IN LEWIS CARCINOMA CELLS UNDER THE ACTION OF ANPHEN NA AND H2O2 BY FLUORESCENCE MICROSCOPY

Author(s):  
Elena Mil ◽  
Valeriy Erokhin ◽  
Vladimir Binyukov ◽  
Anastasia Albantova ◽  
Aleksander Volodkin ◽  
...  
2016 ◽  
Vol 38 (3) ◽  
pp. 1121-1128 ◽  
Author(s):  
Shuang-ling Li ◽  
Jing Yang ◽  
Xiao-fei Lei ◽  
Jian-na Zhang ◽  
Hong-li Yang ◽  
...  

Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD)-peptide-conjugated quantum dot (QD) probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Cuilan Hou ◽  
Wenguang Li ◽  
Zengyou Li ◽  
Jing Gao ◽  
Zhenjie Chen ◽  
...  

Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL on TSCC cells (Tca8113) were evaluated in relation to cell proliferation, apoptosis and adhesion, migration, and invasion using sulforhodamine B assay, fluorescence microscopy technique, flow cytometry (FCM) analysis, and Boyden chamber assay. The associated regulatory mechanisms were examined using FCM and fluorescence microscopy for intracellular reactive oxygen species (ROS) generation, Gelatin zymography assay for matrix metalloproteinase (MMP) activities, and Western blot for apoptosis regulatory proteins (Bcl-2 and Bax). Our data indicated that S-ISL inhibited Tca8113 cell proliferation, adhesion, migration, and invasion while promoting the cell apoptosis. Such effects were accompanied by downregulation of Bcl-2 and upregulation of Bax, reduction of MMP-2 and MMP-9 activities, and decreased ROS production. We conclude that S-ISL is a promising agent targeting TSCC through multiple anticancer effects, regulated by its antioxidant mechanism.


2015 ◽  
Vol 11 ◽  
pp. 739-747 ◽  
Author(s):  
Jonathan M Cousin ◽  
Mary J Cloninger

Four generations of lactose-functionalized polyamidoamine (PAMAM) were employed to further the understanding of multivalent galectin-1 mediated interactions. Dynamic light scattering and fluorescence microscopy were used to study the multivalent interaction of galectin-1 with the glycodendrimers in solution, and glycodendrimers were observed to organize galectin-1 into nanoparticles. In the presence of a large excess of galectin-1, glycodendrimers nucleated galectin-1 into nanoparticles that were remarkably homologous in size (400–500 nm). To understand augmentation of oncologic cellular aggregation by galectin-1, glycodendrimers were used in cell-based assays with human prostate carcinoma cells (DU145). The results revealed that glycodendrimers provided competitive binding sites for galectin-1, which diverted galectin-1 from its typical function in cellular aggregation of DU145 cells.


2019 ◽  
Vol 68 (12) ◽  
pp. 2359-2364
Author(s):  
E. M. Mil’ ◽  
V. N. Erokhin ◽  
V. I. Binyukov ◽  
A. A. Albantova ◽  
A. A. Volod’kin ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 61-66
Author(s):  
E. M. Mil ◽  
V. I. Binyukov ◽  
V. N. Erokhin ◽  
A. A. Albantova ◽  
A. A. Volodkin ◽  
...  

2012 ◽  
Vol 12 (03) ◽  
pp. 1250037
Author(s):  
NATALYA KHRANOVSKAYA ◽  
VALERII OREL ◽  
YURIY GRINEVICH ◽  
OXANA ALEKSEENKO ◽  
ANDRIY ROMANOV ◽  
...  

The effect of mechanically heterogenized (MCH) microparticles of tumor cells (TCs) on antimetastatic action of dendritic cells (DCs) is studied in C57BL/6 mice with Lewis' carcinoma. DCs isolated from mice spleens and loaded with MCH-TCs are analyzed with flow cytometry methods. MCH-TCs are analyzed with optical and/or electron microscopy. The paper describes an original high-precision medical microvibromill with high-acceleration linear induction motor that generates magnetic levitation to produce mechanical heterogenization of TCs. MCH-TCs have a more asymmetric morphology, larger surface and higher internal structure heterogeneity, and higher concentration of free radicals with respect to conventionally treated TCs. The rate of DCs maturity, being affected by pre-incubation with MCH-TCs is found to be higher than its counterpart treated with conventional TCs. DCs loaded with MCH-TCs show a significantly higher ability to induce proliferation of allogeneic lymphocytes in mixed leukocyte reaction. The inhibition index of metastases formation increases from 42% (conventional TCs) to 66% when DCs are treated with MCH-TCs. The present results demonstrate the feasibility of increasing antimetastatic activity of DCs-based vaccines when MCH-TCs is used for their loading. Mathematical model is developed in order to simulate the processes of capture, processing and presentation of tumor antigens by DCs when using conventional TCs or MCH-TCs.


2008 ◽  
Vol 5 (suppl_2) ◽  
Author(s):  
H Sedgwick ◽  
F Caron ◽  
P.B Monaghan ◽  
W Kolch ◽  
J.M Cooper

Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy.


Author(s):  
Dale E. McClendon ◽  
Paul N. Morgan ◽  
Bernard L. Soloff

It has been observed that minute amounts of venom from the brown recluse spider, Loxosceles reclusa, are capable of producing cytotoxic changes in cultures of certain mammalian cells (Morgan and Felton, 1965). Since there is little available information concerning the effect of venoms on susceptible cells, we have attempted to characterize, at the electron microscope level, the cytotoxic changes produced by the venom of this spider.Cultures of human epithelial carcinoma cells, strain HeLa, were initiated on sterile, carbon coated coverslips contained in Leighton tubes. Each culture was seeded with approximately 1x105 cells contained in 1.5 ml of a modified Eagle's minimum essential growth medium prepared in Hank's balanced salt solution. Cultures were incubated at 36° C. for three days prior to the addition of venom. The venom was collected from female brown recluse spiders and diluted in sterile saline. Protein determinations on the venom-were made according to the spectrophotometric method of Waddell (1956). Approximately 10 μg venom protein per ml of fresh medium was added to each culture after discarding the old growth medium. Control cultures were treated similarly, except that no venom was added. All cultures were reincubated at 36° C.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


Sign in / Sign up

Export Citation Format

Share Document