scholarly journals FORMATION OF DIFFUSION BARRIERS IN THE COPPER METALLIZATION SYSTEM IN THE GAP FILLING METHOD

Author(s):  
Andrey Orlov ◽  
Askar Rezvanov ◽  
Vladimir Gvozdev ◽  
Pavel Kuznetsov

The paper proposes and studies materials for diffusion barriers in the gap filling method to prevent copper diffusion through open ends of conductors.

Author(s):  
STEVE D. JONES ◽  
CORINNE LE QUÉRÉ ◽  
CHRISTIAN RÖDENBECK ◽  
ANDREW C. MANNING ◽  
ARE OLSEN

2017 ◽  
Author(s):  
Minseok Kang ◽  
Joon Kim ◽  
Bindu Malla Thakuri ◽  
Junghwa Chun ◽  
Chunho Cho

Abstract. The continuous measurement of H2O and CO2 fluxes using the eddy covariance (EC) technique is still challenging for forests in complex terrain because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly, and the horizontal advection of CO2 generated at night. We propose new techniques for gap-filling and partitioning of the H2O and CO2 fluxes: (1) a model-stats hybrid method (MSH) and (2) a modified moving point test method (MPTm). The former enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. The latter determines the friction velocity (u*) threshold based on an iterative approach using moving windows for both time and u*, thereby allowing not only the nighttime CO2 flux correction and partitioning but also the assessment of the significance of the CO2 drainage. We tested and validated these new methods using the datasets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16 ~ 41 mm year−1 and separated it from the ET (14 ~ 23 % of the annual ET). The MPTm produced consistent carbon budgets using those from the previous research and diameter increment, while it has improved applicability. Additionally, we illustrated certain advantages of the proposed techniques, which enables us to understand better how ET responses to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.


2019 ◽  
Vol 145 (3) ◽  
pp. EL236-EL242
Author(s):  
Bae-Hyung Kim ◽  
Viksit Kumar ◽  
Azra Alizad ◽  
Mostafa Fatemi

2013 ◽  
Vol 740-742 ◽  
pp. 801-804 ◽  
Author(s):  
Tim Behrens ◽  
Thomas Suenner ◽  
Eckart Geinitz ◽  
Andreas Schletz ◽  
Lothar Frey

While aluminum-based metallization schemes on Si have been optimized for the last decades, only few investigations have been done on copper metallization with SiC-devices. Thus, in this work the mechanical as well as the electrical interactions of this metallization system have been analyzed and optimized for SiC-devices in high reliability applications. For optimizing the adhesion of the copper metallization stack on SiC devices, different metallization schemes consisting of adhesion promoters (Ti, Cr, Al, Ta, WTi), diffusion barriers (TiN, Ta, WTi), and the final copper layer have been tested by peel-tests. For investigating the electrical interactions TLM measurements as well as leakage-current measurements have been done on copper metalized SiC samples.


2019 ◽  
Author(s):  
Luke Gregor ◽  
Alice D. Lebehot ◽  
Schalk Kok ◽  
Pedro M. Scheel Monteiro

Abstract. Over the last decade, advanced statistical inference and machine learning have been used to fill the gaps in sparse surface ocean CO2 measurements (Rödenbeck et al. 2015). The estimates from these methods have been used to constrain seasonal, interannual and decadal variability in sea-air CO2 fluxes and the drivers of these changes (Landschützer et al. 2015, 2016, Gregor et al. 2018). However, it is also becoming clear that these methods are converging towards a common bias and RMSE boundary: the wall, which suggests that pCO2 estimates are now limited by both data gaps and scale-sensitive observations. Here, we analyse this problem by introducing a new gap-filling method, an ensemble of six machine learning models (CSIR-ML6 version 2019a), where each model is constructed with a two-step clustering-regression approach. The ensemble is then statistically compared to well-established methods. The ensemble, CSIR-ML6, has an RMSE of 17.16 µatm and bias of 0.89 µatm when compared to a test-dataset kept separate from training procedures. However, when validating our estimates with independent datasets, we find that our method improves only incrementally on other gap-filling methods. We investigate the differences between the methods to understand the extent of the limitations of gap-filling estimates of pCO2. We show that disagreement between methods in the South Atlantic, southeastern Pacific and parts of the Southern Ocean are too large to interpret the interannual variability with confidence. We conclude that improvements in surface ocean pCO2 estimates will likely be incremental with the optimisation of gap-filling methods by (1) the inclusion of additional clustering and regression variables (e.g. eddy kinetic energy), (2) increasing the sampling resolution. Larger improvements will only be realised with an increase in CO2 observational coverage, particularly in today's poorly sampled areas.


2011 ◽  
Vol 520 (1) ◽  
pp. 662-666 ◽  
Author(s):  
Larry Zhao ◽  
Melina Lofrano ◽  
Kristof Croes ◽  
Els Van Besien ◽  
Zsolt Tőkei ◽  
...  

2001 ◽  
Vol 324 (4) ◽  
pp. 1159-1168 ◽  
Author(s):  
D. Fierry Fraillon ◽  
T. Appourchaux
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document