brilliant green
Recently Published Documents


TOTAL DOCUMENTS

597
(FIVE YEARS 114)

H-INDEX

40
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Qana A. Alsulami ◽  
A. Rajeh ◽  
Mohammed A. Mannaa ◽  
Soha M. Albukhari ◽  
Doaa F. Baamer

Abstract The study used a one-step hydrothermal method to prepare Fe3O4-FeVO4 and xRGO/Fe3O4-FeVO4 nanocomposites. XRD, TEM, EDS, XPS, DRS, and PL techniques were used to examine the structurally and morphologically properties of the prepared samples. The XRD results appeared that the Fe3O4-FeVO4 has a triclinic crystal structure. Under hydrothermal treatment, (GO) was effectively reduced to (RGO) as illustrated by XRD and XPS results. UV-Vis analysis revealed that the addition of RGO enhanced the absorption in the visible region and narrowed the band gap energy. The photoactivities of the prepared samples were evaluated by degrading methylene blue (MB), phenol and brilliant green (BG) under sunlight illumination. As indicated by all the nanocomposites, photocatalytic activity was higher than the pure Fe3O4-FeVO4 photocatalyst, and the highest photodegradation efficiency of MB and phenol was shown by the 10%RGO/Fe3O4-FeVO4. In addition, the study examined the mineralization (TOC), photodegradation process, and photocatalytic reaction kinetics of MB and phenol.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Sara A. Alqarni

The in-situ polymerization technology was used to successfully produce nanostructured binary nanocomposites (NCs) made from a poly (3-nitrothiophen) matrix (P3NT) that were loaded effectively with nanoparticles (NPs) of silver titanium dioxide (AgTiO2), of varying percentages (10%, 20%, and 30%). A uniform coating of P3NT covers the AgTiO2 NPs. Various methods were performed to confirm the fabrication of the binary P3NT/AgTiO2 NCs adsorbents, such as FTIR, XRD, SEM, and EDX. Both dyes (brilliant green (B.G.) and crystal violet (C.V.)) were removed from liquid media by using the binary P3NT/AgTiO2 NCs. A range of batch adsorption studies was used to optimize various factors that impact the elimination of B.G. or C.V. dyes, including the pH, weight of the binary P3NT/AgTiO2 NC, proportion of AgTiO2 NP, time, and temperature. The pseudo-second-order kinetics ( R 2 = 0.999 ) was better adapted for the adsorption procedure’s empirical data whereby the maximum adsorption capacity of the C.V. dye was 43.10 mg/g and ( R 2 = 0.996 ) the maximum adsorption potential was 40.16 mg/g for B.G. dye, succeeded by the pseudo-second-order kinetics. Moreover, the adhesion of B.G. and C.V. pigments on the layers of NCs involves an endothermic reaction. In addition, the concocted adsorbent not only exhibited strong adsorption characteristics during four consecutive cycles but also possessed a higher potential for its reuse. According to the findings, the NCs might possibly be used as a robust and reusable adsorbent to remove B.G. and C.V. pigments from an aqueous medium.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7686
Author(s):  
Peter A. Ajibade ◽  
Abimbola E. Oluwalana

We present the preparation of octadecylamine-capped ZnS quantum dots from bis(morpholinyldithiocarbamato)Zn(II) complex. The complex was thermolyzed at 130 °C in octadecylamine at different times, to study the effect of reaction time on the morphological and photocatalytic properties of the ZnS quantum dots. Powder X-ray diffraction patterns confirmed a hexagonal wurtzite crystalline phase of ZnS, while HRTEM images showed particle sizes of about 1–3 nm, and energy band gaps of 3.68 eV (ZnS–1), 3.87 eV (ZnS–2), and 4.16 eV (ZnS–3) were obtained from the Tauc plot for the ZnS nanoparticles. The as-prepared ZnS were used as photocatalysts for the degradation of brilliant green, rhodamine B, and binary dye consisting of a mixture of brilliant green-rhodamine B. The highest photocatalytic degradation efficiency of 94% was obtained from ZnS–3 with low photoluminescence intensity. The effect of catalytic dosage and pH of the dyes solution on the photocatalytic process shows that pH 8 is optimal for the degradation of brilliant green, while pH 6.5 is the best for photocatalytic degradation of rhodamine B. The degradation of the binary dyes followed the same trends. The effect of catalytic dosage shows that 1 mg mL−1 of the ZnS nano-photocatalyst is the optimum dosage for the degradation of organic dyes. Reusability studies show that the ZnS quantum dots can be reused five times without a significant reduction in degradation efficiency.


2021 ◽  
Vol 15 (4) ◽  
pp. 567-574
Author(s):  
Huda A. Jaber ◽  
◽  
Marwa F. Abdul Jabbar ◽  

The current study deals with the removal of cationic dye (brilliant green) and anionic dye (methyl orange) from wastewater by using sunflower husk as an adsorbent. The operation takes place batch wise by applying several concentrations of the dye solution with various adsorbent amounts, at a range of initial PH values and particle sizes at varying contact time intervals. The percent of dye removed for two dyes increased with increasing time and adsorbent dose and decreased with increasing the dye concentration and particle size. The equilibrium time differed according to conditions used. The optimum removal for brilliant green dye was 98 %, which was achieved at 50 ppm dye concentration, 2 g\l adsorbent dose, 75 µm particles size and pH 7 at contact time of 1 h, compared with low removal for methyl orange that reached 54 % under optimum conditions (dye concentration 10 ppm, adsorbent dose 4 g/l, pH 3 at the same particles size and time). Kinetic studies were conducted and revealed that the adsorption was well defined by pseudo-second order model and could be described by the Langmuir isotherm.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Muhammad Sadiq Hussain ◽  
Rabia Rehman ◽  
Muhammad Imran

Trapa natans peels (TNPs) and Citrullus lanatus peels (CLPs) were utilized for the biosorptive removal of brilliant green dye (BGD), after modifying with citric acid. Characterization and surface morphology were studied by Fourier transform infrared spectroscopy and scanning electron microscopy. For the removal of BGD by citric acid-treated Trapa natans peels (CA-TNPs), the optimum conditions were obtained with adsorbent dose 0.8 g, contact time 25 minutes, initial pH 5, temperature 30°C, and agitation speed 100 rpm, while for the citric acid-treated Citrullus lanatus peels (CA-CLPs), adsorbent dose 0.8 g, contact time 20 minutes, pH 5, temperature 30°C, and agitation speed 100 rpm gave optimum results. The qmax values obtained were 108.6, 128, 144.9, and 188.68 mg/g for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively, while the correlation coefficient (R2) values obtained were 0.985, 0.986, 0.985, and 0.998 for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively. These favor the Langmuir isotherm and pseudo-second-order kinetics, with negative (ΔG0) values of all adsorbents, determining that the adsorption phenomenon is exothermic and spontaneous in nature. Both citric acid-treated peels of Trapa natans and Citrullus lanatus were found suitable for bulk-scale eradication of hazardous, toxic, and carcinogenic basic cationic dyes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sirajul Haq ◽  
Aqsa Waheed Raja ◽  
Sadiq Ur Rehman ◽  
Amine Mezni ◽  
Manel Ben Ali ◽  
...  

The NiO-ZnO nanocomposite (NiO-ZnO NC) was synthesized by ecofriendly process by using Diospyros kaki (D. kaki) extract of leaves as reducing and capping agents. X-ray diffraction (XRD) was used for examined crystallinity, cell dimensions, and crystallite size (7.6 nm). To determine the purity of sample and weight percentage, energy dispersive X-ray (EDX) is used. The surface morphology was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By using Fourier transform infrared spectroscopy (FTIR), functional groups in samples were determined. By using diffuse reflectance data (DRS), band gap energy calculated via Tauc plot was 3.23 eV. The photocatalytic activity was checked against brilliant green (BG) and 4-nitrophenol (4-NP) and 92.5% and 69.7% of brilliant green (BG) and 4-nitrophenol (4-NP) were degraded with rate of degradation which were 0.0281 and 0.011 min−1.


Author(s):  
Mayandi Jeyaraj ◽  
Raji Atchudan ◽  
Sakthivel Pitchaimuthu ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Palanichamy Sennu

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shen Shen ◽  
Jiajia Fu ◽  
Jia Yi ◽  
Liyun Ma ◽  
Feifan Sheng ◽  
...  

AbstractIt is of great importance to explore a creative route to improve the degradation efficiency of organic pollutants in wastewater. Herein, we construct a unique hybrid system by combining self-powered triboelectric nanogenerator (TENG) with carbon dots-TiO2 sheets doped three-dimensional graphene oxide photocatalyst (3DGA@CDs-TNs), which can significantly enhance the degradation efficiency of brilliant green (BG) and direct blue 5B (DB) owing to the powerful interaction of TENG and 3DGA@CDs-TNs photocatalyst. The power output of TENG can be applied for wastewater purification directly, which exhibits a self-powered electrocatalytic technology. Furthermore, the results also verify that TENG can replace conventional electric catalyst to remove pollutants effectively from wastewater without any consumption. Subsequently, the unstable fragments and the plausible removal pathways of the two pollutants are proposed. Our work sheds light on the development of efficient and sustainable TENG/photocatalyst system, opening up new opportunities and possibilities for comprehensive utilization of random energy.


Sign in / Sign up

Export Citation Format

Share Document