scholarly journals DURATION LIMIT OF LASER PULSES EMITTED FROM A Ce-DOPED CRYSTAL SHORT CAVITY

2017 ◽  
Vol 24 (1&2) ◽  
pp. 177-183
Author(s):  
Le Hoang Hai ◽  
Nguyen Dai Hung ◽  
Hoang Huu Hoa ◽  
Alex V. V. Quema ◽  
Nobuhiko Sarukura

Based on the rate equation set for broadband cavities, the dependence of pulse duration on cavity and pumping parameters is analyzed. The cavity uses a Ce-doped crystal as a gain medium. Computation results show the variation of the pulse width with the change of cavity length, mirror reflectivity, pumping energy and pumping pulse duration. A significant influence of multiple-pulse operation in limiting pulse duration is realized and a pulse-width of the order 200 ps is found to be the limit for the direct generation of ultraviolet single picosecond pulses from a Ce:LLF short cavity.

2014 ◽  
Vol 937 ◽  
pp. 614-619
Author(s):  
Chuan Lin Tang ◽  
Jie Pei ◽  
Dong Hu ◽  
Xiao Ting He

In order to improve the erosion effect of jet under submergence condition, experimental studies of erosion generated from the self-excited pulsed jet was carried out by using developed self-excited oscillation nozzle. The erosion volume and depth of pulsed jet were measured and taking mortar block as an erosion part. The results were that the standoff has significant influence on erosion effect. The erosion volume firstly decreases with increases in cavity length and then increases to a peak value. Erosion volume of pulsed jet is significantly higher than that of continuous jet, the erosion depth of two jet has slight difference.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Daniel Holder ◽  
Rudolf Weber ◽  
Thomas Graf ◽  
Volkher Onuseit ◽  
David Brinkmeier ◽  
...  

AbstractA simplified analytical model is presented that predicts the depth progress during and the final hole depth obtained by laser percussion drilling in metals with ultrashort laser pulses. The model is based on the assumption that drilled microholes exhibit a conical shape and that the absorbed fluence linearly increases with the depth of the hole. The depth progress is calculated recursively based on the depth changes induced by the successive pulses. The experimental validation confirms the model and its assumptions for percussion drilling in stainless steel with picosecond pulses and different pulse energies.


2015 ◽  
Vol 17 (3) ◽  
pp. 033027 ◽  
Author(s):  
G G Scott ◽  
V Bagnoud ◽  
C Brabetz ◽  
R J Clarke ◽  
J S Green ◽  
...  

Author(s):  
Mohit Singh ◽  
Sanjay Mishra ◽  
Vinod Yadava ◽  
J. Ramkumar

Laser beam percussion drilling (LBPD) can create high density holes in aerospace materials with the repeated application of laser pulses at a single spot. In this study, one-parameter-at-a-time approach has been used to investigate the individual effect of peak power, pulse width and pulse frequency on geometrical accuracy and metallurgical distortion during LBPD of 0.85[Formula: see text]mm thick Ti–6Al–4V sheet using 200[Formula: see text]W Yb:YAG fiber laser. It has been found that the output parameters behave differently at the higher and lower values of a particular input process. The increase of pulse width from 1 to 1.50[Formula: see text]ms increases hole taper by 20% whereas the same corresponding change from 1.50 to 2.00[Formula: see text]ms reduces the taper by 20%. The increase of pulse frequency from 10 to 50[Formula: see text]Hz reduces hole circularity by 40% but the same proportionate change from 50 to 90[Formula: see text]Hz reduces circularity by 79%. Increase of peak power from 1.70 to 2.0[Formula: see text]kW increases hole taper by 8% but the corresponding increase from 2 to 2.30[Formula: see text]kW is 143%.


2019 ◽  
Vol 37 (01) ◽  
pp. 101-109 ◽  
Author(s):  
Mohamed E. Shaheen ◽  
Joel E. Gagnon ◽  
Brian J. Fryer

AbstractThis study investigates the interaction of picosecond laser pulses with sapphire and brass in air using scanning electron microscopy. A picosecond laser system operating at a wavelength of 785 nm, pulse width of 110 ps, and variable repetition rate (1–1000 Hz) was used in this study. The pulse width applied in this work was not widely investigated as it lies in the gap between ultrashort (femtosecond) and long (nanosecond) pulse width lasers. Different surface morphologies were identified using secondary electron and backscattered electron imaging of the ablated material. Thermal ablation effects were more dominant in brass than in sapphire. Exfoliation and fractures of sapphire were observed at high laser fluence. Compared with brass, multiple laser pulses were necessary to initiate ablation in sapphire due to its poor absorption to the incident laser wavelength. Ablation rate of sapphire was lower than that of brass due to the dissipation of a portion of the laser energy due to heating and fracturing of the surface.


Sign in / Sign up

Export Citation Format

Share Document