high laser fluence
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2264
Author(s):  
Nithin Joy ◽  
Anne-Marie Kietzig

Nanoparticles generated during laser material processing are often seen as annoying side products, yet they might find useful application upon proper collection. We present a parametric study to identify the dominant factors in nanoparticle removal and collection with the goal of establishing an in situ removal method during femtosecond laser machining. Several target materials of different electrical resistivity, such as Cu, Ti, and Si were laser machined at a relatively high laser fluence. Machining was performed under three different charge conditions, i.e., machining without an externally applied charge (alike atmospheric pulsed laser deposition (PLD)) was compared to machining with a floating potential and with an applied field. Thereby, we investigated the influence of three different charge conditions on the behavior of laser-generated nanoparticles, in particular considering plume deflection, nanoparticle accumulation on a collector plate and their redeposition onto the target. We found that both strategies, machining under a floating potential or under an applied field, were effective for collecting laser-generated nanoparticles. The applied field condition led to the strongest confinement of the nanoparticle plume and tightest resulting nanoparticle collection pattern. Raster-scanning direction was found to influence the nanoparticle collection pattern and ablation depth. However, the laser-processed target surface remained unaffected by the chosen nanoparticle collection strategy. We conclude that machining under a floating potential or an applied field is a promising setup for removing and collecting nanoparticles during the machining process, and thus provides an outlook to circular waste-free laser process design.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Maricel Agop ◽  
Nicanor Cimpoesu ◽  
Silviu Gurlui ◽  
Stefan Andrei Irimiciuc

The optimization of the pulsed laser deposition process was attempted here for the generation of hydroxyapatite thin films. The deposition process was monitored with an ICCD (Intensified Coupled Charged Device) fast gated camera and a high-resolution spectrometer. The global dynamics of the laser produced plasma showed a self-structuring into three components with different composition and kinetics. The optical emission spectroscopy revealed the formation of a stoichiometric plasma and proved that the segregation in the kinetic energy of the plasma structure is also reflected by the individual energies of the ejected particles. Atomic Force Microscopy was also implemented to investigate the properties and the quality of the deposited film. The presence of micrometric clusters was seen at a high laser fluence deposition with in-situ ICCD imaging. We developed a fractal model based on Schrödinger type functionalities. The model can cover the distribution of the excited states in the laser produced plasma. Moreover, we proved that SL(2R) invariance can facilitate plasma substructures synchronization through a self-modulation in amplitude.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1268 ◽  
Author(s):  
David Dias ◽  
Osmar Santos ◽  
Wellington Alves ◽  
Milton Lima ◽  
Maria Silva

The surface melting of a NiTi superelastic alloy using a high-power laser Yb:Fiber was investigated. The influence of this process on the microstructural and mechanical properties was also examined. The reference material was a 3 mm nitinol strip with a homogeneous austenitic B2 phase. For the laser surface melting process, input fluences were applied from 17.5 to 45 J/mm2. The morphology of the structure and the chemical composition of several regions were determined by optical microscopy, scanning electron microscopy, dispersive energy spectra, and X-ray diffraction techniques. The mechanical properties, such as modulus of elasticity and hardness, were determined using nanoindentation and microindentation techniques. The greatest surface finishing of the fusion zone was observed for the condition 35 J/mm2. Three well-defined regions (fusion zone (FZ), heat-affected zone (HAZ), base metal (BM)) could be observed and dimensions of grain size, width, and depth of the melted pool were directly affected by the laser fluence. The geometry of the molten pool could be controlled by the optimization of the laser parameters. High laser fluence caused preferential volatilization of nickel, dynamic precipitation of intermetallic phases, including Ti2Ni, Ni3Ti, and Ni4Ti3, as well as solubilization of TiC in the matrix, which led to grain refinement. Thus, high laser fluence is a suitable technique to enhance mechanical properties such as hardness and Young’s modulus.


2019 ◽  
Vol 37 (01) ◽  
pp. 101-109 ◽  
Author(s):  
Mohamed E. Shaheen ◽  
Joel E. Gagnon ◽  
Brian J. Fryer

AbstractThis study investigates the interaction of picosecond laser pulses with sapphire and brass in air using scanning electron microscopy. A picosecond laser system operating at a wavelength of 785 nm, pulse width of 110 ps, and variable repetition rate (1–1000 Hz) was used in this study. The pulse width applied in this work was not widely investigated as it lies in the gap between ultrashort (femtosecond) and long (nanosecond) pulse width lasers. Different surface morphologies were identified using secondary electron and backscattered electron imaging of the ablated material. Thermal ablation effects were more dominant in brass than in sapphire. Exfoliation and fractures of sapphire were observed at high laser fluence. Compared with brass, multiple laser pulses were necessary to initiate ablation in sapphire due to its poor absorption to the incident laser wavelength. Ablation rate of sapphire was lower than that of brass due to the dissipation of a portion of the laser energy due to heating and fracturing of the surface.


Author(s):  
Corey Kruse ◽  
Edwin Peng ◽  
Craig Zuhlke ◽  
Jeff Shield ◽  
Dennis Alexander ◽  
...  

Copper pool boiling surfaces are tested for pool boiling enhancement due to femtosecond laser surface processing (FLSP). FLSP creates self-organized micro/nanostructures on metallic surfaces and creates highly wetting and wicking surfaces with permanent surface features. In this study two series of samples were created. The first series consists of three flat FLSP copper surfaces with varying microstructures and the second series is an open microchannel configuration with laser processing over the horizontal surfaces of the microchannels. These microchannels range in height from 125 microns to 380 microns. Each of these surfaces were tested for pool boiling performance. It was found that all the processed surfaces except one resulted in a decrease in critical heat flux and heat transfer coefficient compared to an unprocessed surface. It was found that the laser fluence parameter had a significant role in whether there was an increase in CHF or HTC. A cross sectioning technique was employed to study the different layers of the microstructure and to understand how FLSP could have a negative effect on the CHF and HTC. It was found that a thick oxide layer forms during the FLSP process of copper in an open-air atmosphere. The thickness and uniformity of the oxide layer is highly dependent on the laser fluence. A low fluence sample results in an inconsistent oxide layer of nonuniform thickness and subsequently an increase in CHF and HTC. A high laser fluence sample results in a uniformly thick oxide layer which increases the thermal resistance of the sample and allows for a premature CHF and decrease in HTC.


2015 ◽  
Vol 592 ◽  
pp. 216-220 ◽  
Author(s):  
Christopher J. Stolz ◽  
Justin E. Wolfe ◽  
Paul B. Mirkarimi ◽  
James A. Folta ◽  
John J. Adams ◽  
...  

Author(s):  
Wenqi Li ◽  
Erol Sancaktar

The effects of 248 nm KrF excimer laser irradiation on combinations of different thickness PET films and different stainless steel mask mesh opening sizes were considered as a possible method to achieve different size perforations on different thickness PET films, in order to provide an effective and controllable perforation technology. Therefore, ablation behavior of PET films has been investigated for different laser energy fluence and number of laser pulses. Morphology of irradiated samples was observed by optical microscopy, and atomic forced microscopy to study topography and microstructures after laser ablation. An attempt has been made of correlate these findings with the orientation, strength and mechanical properties of the polymer. The experimental results reveal that the percentage of perforation and the average perforated area increase with increasing number of pulses for all film thicknesses. The affected area, defined as the perforated area plus the heat affected zone (a black-char-region around the perforated area) decrease with increasing number of pulses. Due to the heat conducted from the steel mash wire, especially at cell corners, the perforation process seems to start initially at the cell corners. High laser fluence seems to lead to surface depressions due to thermal shock and surface stress waves along the process directions confirmed by tensile testing and x-ray analyses. The presence and the geometry of surface depressions were confirmed by atomic forced microscopy.


Sign in / Sign up

Export Citation Format

Share Document