scholarly journals POSSIBILITIES OF APPLICATION MACHINE LEARNING METHODS IN SOLVING ANALYTICAL PROBLEMS IN METALLURGICAL INDUSTRY

2021 ◽  
Vol 9 (3) ◽  
pp. 61-65
Author(s):  
Diana Yusupova ◽  
Sergey Muzalev

Background. Machine learning is a promising field for organization in the age of development of high-tech methods of management and organization of the company. As a rule, this term is used in relation to artificial intelligence, namely, machines that could learn independently. Thus, the main goal of this work is to assess the prospects for using these methods for solving various problems in a corporation. Methods. The article introduces the main methods of machine learning, their analysis, linear and non-linear learning methods are given, their use in practice is indicated, and the key advantages of using a trained artificial intelligence in a company are identified. Result. As a result, the author proposes ways of using machine learning methods in a firm, analyzes their advantages and disadvantages, identifies the problems of implementing artificial intelligence learning opportunities in practice.

Author(s):  
A. V. Gusev ◽  
R. E. Novitskiy ◽  
A. A. Ivshin ◽  
A. A. Alekseev

Objective: to review domestic and foreign literature on the issue of machine learning methods applied in medical information systems (MIS), to analyze the accuracy and efficiency of the technologies under study, their advantages and disadvantages, the possibilities of implementation in clinical practice.Material and methods. The literature search was performed in the PubMed/MEDLINE databases covering the period from 2000 to 2020 (using groups of keyphrases: "machine learning", "laboratory data", "clinical events", "prediction diseases"), CyberLeninka ("machine learning", "laboratory data", "clinical events", "prediction diseases" Russian keyphrases combinations) and Papers With Code ("clinical events", "prediction diseases", "electronic health record"). After reviewing the full text of 30 literature sources that met the selection criteria, the 19 most relevant articles were selected.Results. An analysis of sources that describe the application of artificial intelligence techniques to obtain predictive analytics, taking into account information about patients, such as demographic, anamnestic, and laboratory data, the data of instrumental studies, information about existing and former diseases available in MIS, was performed. The existing ways of predicting adverse medical outcomes using machine learning methods were considered. Information about the significance of the used laboratory data for constructing high-precision predictive mathematical models is presented.Conclusion. Implementation of machine learning algorithms in MIS seems to be a promising tool for effective prediction of adverse medical events for wide application in real clinical practice. It corresponds to the global trend in the development of personalized medicine based on the calculation of individual risk. There is an increase in the activity of research in the field of predicting noncommunicable diseases using artificial intelligence technologies.


Author(s):  
Derya Yiltas-Kaplan

This chapter focuses on the process of the machine learning with considering the architecture of software-defined networks (SDNs) and their security mechanisms. In general, machine learning has been studied widely in traditional network problems, but recently there have been a limited number of studies in the literature that connect SDN security and machine learning approaches. The main reason of this situation is that the structure of SDN has emerged newly and become different from the traditional networks. These structural variances are also summarized and compared in this chapter. After the main properties of the network architectures, several intrusion detection studies on SDN are introduced and analyzed according to their advantages and disadvantages. Upon this schedule, this chapter also aims to be the first organized guide that presents the referenced studies on the SDN security and artificial intelligence together.


2019 ◽  
Vol 24 (34) ◽  
pp. 3998-4006
Author(s):  
Shijie Fan ◽  
Yu Chen ◽  
Cheng Luo ◽  
Fanwang Meng

Background: On a tide of big data, machine learning is coming to its day. Referring to huge amounts of epigenetic data coming from biological experiments and clinic, machine learning can help in detecting epigenetic features in genome, finding correlations between phenotypes and modifications in histone or genes, accelerating the screen of lead compounds targeting epigenetics diseases and many other aspects around the study on epigenetics, which consequently realizes the hope of precision medicine. Methods: In this minireview, we will focus on reviewing the fundamentals and applications of machine learning methods which are regularly used in epigenetics filed and explain their features. Their advantages and disadvantages will also be discussed. Results: Machine learning algorithms have accelerated studies in precision medicine targeting epigenetics diseases. Conclusion: In order to make full use of machine learning algorithms, one should get familiar with the pros and cons of them, which will benefit from big data by choosing the most suitable method(s).


2021 ◽  
Author(s):  
Andreas Sepp

Artificial intelligence and machine learning methods had significant contribution to the advancement and progress of predictive analytics. This article presents a state of the art of methods and applications of artificial intelligence and machine learning.


2019 ◽  
Author(s):  
Levi John Wolf ◽  
Elijah Knaap

Dimension reduction is one of the oldest concerns in geographical analysis. Despite significant, longstanding attention in geographical problems, recent advances in non-linear techniques for dimension reduction, called manifold learning, have not been adopted in classic data-intensive geographical problems. More generally, machine learning methods for geographical problems often focus more on applying standard machine learning algorithms to geographic data, rather than applying true "spatially-correlated learning," in the words of Kohonen. As such, we suggest a general way to incentivize geographical learning in machine learning algorithms, and link it to many past methods that introduced geography into statistical techniques. We develop a specific instance of this by specifying two geographical variants of Isomap, a non-linear dimension reduction, or "manifold learning," technique. We also provide a method for assessing what is added by incorporating geography and estimate the manifold's intrinsic geographic scale. To illustrate the concepts and provide interpretable results, we conducting a dimension reduction on geographical and high-dimensional structure of social and economic data on Brooklyn, New York. Overall, this paper's main endeavor--defining and explaining a way to "geographize" many machine learning methods--yields interesting and novel results for manifold learning the estimation of intrinsic geographical scale in unsupervised learning.


2021 ◽  
Vol 19 (3) ◽  
pp. 55-64
Author(s):  
K. N. Maiorov ◽  

The paper examines the life cycle of field development, analyzes the processes of the field development design stage for the application of machine learning methods. For each process, relevant problems are highlighted, existing solutions based on machine learning methods, ideas and problems are proposed that could be effectively solved by machine learning methods. For the main part of the processes, examples of solutions are briefly described; the advantages and disadvantages of the approaches are identified. The most common solution method is feed-forward neural networks. Subject to preliminary normalization of the input data, this is the most versatile algorithm for regression and classification problems. However, in the problem of selecting wells for hydraulic fracturing, a whole ensemble of machine learning models was used, where, in addition to a neural network, there was a random forest, gradient boosting and linear regression. For the problem of optimizing the placement of a grid of oil wells, the disadvantages of existing solutions based on a neural network and a simple reinforcement learning approach based on Markov decision-making process are identified. A deep reinforcement learning algorithm called Alpha Zero is proposed, which has previously shown significant results in the role of artificial intelligence for games. This algorithm is a decision tree search that directs the neural network: only those branches that have received the best estimates from the neural network are considered more thoroughly. The paper highlights the similarities between the tasks for which Alpha Zero was previously used, and the task of optimizing the placement of a grid of oil producing wells. Conclusions are made about the possibility of using and modifying the algorithm of the optimization problem being solved. Аn approach is proposed to take into account symmetric states in a Monte Carlo tree to reduce the number of required simulations.


2020 ◽  
Vol 17 (9) ◽  
pp. 4336-4339
Author(s):  
D. S. V. Suma Priya ◽  
D. Esther Rani ◽  
A. Pavan Shankar Sai ◽  
A. Konda Babu ◽  
Durgesh Nandan

This paper clearly explains the concept, importance and main aim of machine learning and construction of the machine learning system. There are several ideas regarding this machine learning which are formed by a number of strategies. This effort leads to introduce many machine learning methods such as learning by commands, concept, learning by comparison, and learning by some algorithms. This article provides information about the main purpose of machine learning and its development. Machine learning is the primary aspect that promotes any system to have intelligence. One of its main applications is artificial intelligence. Machine learning is highly suited for complex level system representation. There are a number of machine learning concepts that leads to the integration of number of networks.


2019 ◽  
Vol 212 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Guy S. Handelman ◽  
Hong Kuan Kok ◽  
Ronil V. Chandra ◽  
Amir H. Razavi ◽  
Shiwei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document