Mid-crustal detachment beneath southern Timor-Leste: seismic evidence for Australian basement in the Timor collision complex (and implications for prospectivity)

2021 ◽  
Author(s):  
T. R. Charlton

Seismic data originally acquired over SW Timor-Leste in 1994 shows two consistent seismic reflectors mappable across the study area. The shallower ‘red’ reflector (0.4-1s twt) deepens southward, although with a block-faulted morphology. The normal faults cutting the red marker tend to merge downward into the deeper ‘blue’ marker horizon (0.5-2.8s twt), which also deepens southward. Drilling intersections in the Matai petroleum exploration wells demonstrate that the red marker horizon corresponds to the top of metamorphic basement (Lolotoi Complex), while the blue marker horizon has the geometry of a mid-crustal extensional detachment. We see no indications for thrusting on the seismic sections below the red marker horizon, consistent with studies of the Lolotoi Complex at outcrop. However, surficial geology over much of the seismic survey area comprises a thin-skinned fold and thrust belt, established in 8 wells to overlie the Lolotoi Complex. We interpret the fold and thrust belt as the primary expression of Neogene arc-continent collisional orogeny, while the Lolotoi Complex represents Australian continental basement underthrust beneath the collision complex. In the seismic data the basal décollement to the thrust belt dips southward beneath the synorogenic Suai Basin on the south coast of Timor, and presumably continues southward beneath the offshore fold and thrust belt, linking into the northward-dipping décollement that emerges at the Timor Trough deformation front. The same seismic dataset has been interpreted by Bucknill et al. (2019) in terms of emplacement of an Asian allochthon on top of an imbricated Australian passive margin succession. These authors further interpreted a subthrust anticlinal exploration prospect beneath the allochthon, which Timor Resources plan to drill in 2021. This well (Lafaek) will have enormous significance not only commercially, but potentially also in resolving the long-standing allochthon controversy in Timor: i.e., does the Lolotoi Complex represent ‘Australian’ or ‘Asian’ basement?

2019 ◽  
Vol 132 (5-6) ◽  
pp. 997-1012 ◽  
Author(s):  
Michael R. Hudec ◽  
Tim P. Dooley ◽  
Frank J. Peel ◽  
Juan I. Soto

Abstract Passive-margin salt basins tend to be much more deformed than their nonsalt equivalents, but they are by no means all the same. We used seismic data to study the Salina del Bravo region, northeast Mexico, to investigate the ways in which margin configuration and postsalt uplift history can influence passive-margin salt tectonics. The Salina del Bravo area contains four main structural systems, all of which trend NNE across the entire region. These structures are the Bravo trough, Sigsbee salt canopy, Perdido fold-and-thrust belt, and BAHA high. Gravity-driven deformation did not begin until more than 130 m.y. after salt deposition, because of buttressing against the BAHA high. We suggest that deformation was ultimately triggered in the Cenozoic by Cordilleran uplift that tilted the margin seaward and created a major sediment source terrane. Sediments shed from the uplift expelled salt seaward to form the Sigsbee canopy. At the same time, tilted and loaded sediments were translated seaward on the Louann salt until they were buttressed against the BAHA high, forming the Perdido fold-and-thrust belt. A physical model was built to test this hypothesis. The model was able to reproduce most of the major structures in the region, suggesting that the hypothesis is reasonable. The Salina del Bravo region shows how a downdip buttress can inhibit gravity-driven salt deformation in passive-margin salt basins. Furthermore, the area also shows the importance of postsalt uplift, which can destabilize a margin through a combination of tilting and sedimentation.


2019 ◽  
pp. 1350-1361
Author(s):  
Mohammed Sadi Fadhil ◽  
Ali M. Al-Rahim

Study of three dimensional seismic data of Merjan area-central Iraq has shown that the Jurassic – Cretaceous succession is affected by faulting system. Seven major normal faults were identified and mapped. Synthetic traces have been calculated by using sonic and density log data of the well Me-1.Two exploration wells were drilled in the area Me-1 and Wkf-1 wells, the distance between them is 15.82 km. Discussion about the effect of this system on the sedimentary package has been presented. The tight faults that couldn’t be distinguished it on seismic sections were determined using seismic attributes. They have different strike and limited in their vertical and horizontal extension. They are system facilitates the movement or migration of the fluid across the stratigraphic column in the study area. Faulting framework can be divided into two groups: the first affects the Jurassic and lower Cretaceous rocks and the second effect the upper Cretaceous and lower Tertiary rocks. The first group is associated with the post rift thermal sag, passive margin progradation and gravitational collapse (lower Jurassic – upper Cretaceous (Turonian) 022 – 93 Ma); approximately Sargelue – NahrUmr depositional time. The second group is few and is associated with the rifting creating the Euphrates graben (Late Turonian – Maastrichtian 90 – 70 Ma) approximately Tanuma shale / Sadi – Shiranish) depositional time.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


2019 ◽  
Vol 34 (1) ◽  
Author(s):  
Tumpal Bernhard Nainggolan ◽  
Said Muhammad Rasidin ◽  
Imam Setiadi

Multiple often and always appear in marine seismic data due to very high acoustic impedance contrasts. These events have undergone more than one reflection. This causes the signal to arrive back at the receiver at an erroneous time, which, in turn, causes false results and can result in data misinterpretation. Several types of multiple suppression have been studied in literature. Methods that attenuate multiples can be classified into three broad categories: deconvolution methods; filtering methods and wavefield prediction subtraction methods. The study area is situated on Seram Sea in between 131°15’E – 132°45’E and 3°0’S – 4°0’S, Seram Trough which is located beneath Seram Sea at northern part of the Banda-Arc – Australian collision zone and currently the site of contraction between Bird’s Head and Seram. This research uses predictive deconvolution and FK-filter to attenuate short period multiple from their move out, then continued by SRME method to predict multiple that cannot be attenuated from previous method, then followed by Radon transform to attenuate multiple that still left and cannot be attenuated by SRME method. The result of each method then compared to each other to see how well multiple attenuated. Predictive deconvolution and F-K filter could not give satisfactory result especially complex area where multiple in dipping event is not periodic, SRME method successfully attenuate multiple especially in near offset multiple without need subsurface information, while SRME method fails to attenuate long offset multiple, combination of SRME method and Radon transform can give satisfactory result with careful selection of the Radon transform parameters because it can obscure some primary reflectors. Based on geological interpretation, Seram Trough is built by dominant structural style of deposited fold and thrust belt. The deposited fold and thrust belt has a complexly fault geometry from western zone until eastern of seismic line.


1995 ◽  
Vol 35 (1) ◽  
pp. 44
Author(s):  
I. F. Young ◽  
T.M. Schmedje ◽  
W.F. Muir

The Elang-1 oil discovery in the Timor Gap Zone of Cooperation (ZOC) has established a new oil province in the eastern Timor Sea. The discovery well, completed in February 1994, recorded a flow of 5,800 BOPD (5,013 STBOPD) from marine sandstone of the Late Jurassic Montara beds. The oil is a light (56° API), undersaturated oil with a GOR of approximately 550 SCF/STB. Elang-1 was the first well drilled by the ZOCA 91-12 Joint Venture and only the fifth well in the ZOC since exploration of this frontier area resumed in 1992.The Elang Prospect, initially mapped by Petroz in the late 1970s on the basis of regional seismic data, was detailed by the 1992 Walet Seismic Survey. The prospect is the main crestal culmination on the Elang Trend, a prominent structural high to the north of the Flamingo High that was established during continental break-up in the Late Jurassic. The Elang Trend is bounded to the south by a series of en-echelon normal faults and connecting relay ramps and comprises a number of horst and tilted fault blocks.Elang-1 tested a near crestal culmination on the Elang Prospect and intersected a 76.5 m gross oil column below 3,006.5 m RT. At time of drilling this oil column was the thickest that had been encountered by any well in the Northern Bonaparte Basin. Good quality reservoir sandstone in six discrete bodies were intersected within the Montara beds. Core-measured porosity and permeability range up to 17 per cent and 2.2 Darcies within the oil column.Subsequent to the Elang discovery, the Joint Venture recorded a 402 km2 3D survey over the Elang Trend. Elang-2, an appraisal well spudded in September 1994 prior to receipt of the 3D data, established the lateral continuity of the Montara beds reservoirs. Flow rates of 6,080 BOPD (5,300 STBOPD) and 7,500 BOPD (5,970 STBOPD) from separate intervals have confirmed that high deliverabilities can be expected from individual sandstones. Further appraisal drilling is planned in the first half of 1995. This is expected to lead to commercial development of the field.


Sign in / Sign up

Export Citation Format

Share Document