scholarly journals Emerging Issues in East Coast Oil and Gas Development

1997 ◽  
Vol 35 (2) ◽  
pp. 269
Author(s):  
Michael Harrington ◽  
Colm Seviour ◽  
Mark MacDonald ◽  
James Dickson

The authors discuss recent developments in oil and gas production in Newfoundland and Nova Scotia and the legal and regulatory regimes which affect both interest holders and oil and gas practitioners. The authors pay particular attention to jurisdictional issues arising from the intersection of federal and provincial legislation and clarify when particular legislation does or does not apply. The authors then examine the legal requirements for the approval of and implementation of oil and gas development plans, the impact of provincial royalty and tax regimes on development, and the criteria for the granting of significant discovery licenses. Finally, the authors discuss the roles of provincial and federal bodies with respect to regulatory and environmental inter-jurisdictional issues.

Author(s):  
Ksenya V. Myachina ◽  

The depth and scale of man-made transformations of steppe landscapes in the course of oil and gas production remain underestimated. The sites provided for the development of oil and gas fields are not allocated to a separate category of the Russian Land Fund . Often there is a mismanagement of subsoil companies to the plots provided to them, provoked by the loyal attitude of the Supervisory authorities. Approved projects of oil and gas development often demonstrate minor significance of section on assessing the impact on the environment. Optimization of this type of land use becomes necessary at this stage of oil and gas production development.


Author(s):  
Trond G. Gru¨ner ◽  
Lars E. Bakken

The development of wet gas compressors will enable increased oil and gas production rates and enhanced profitable operation by subsea well-stream boosting. A more fundamental knowledge of the impact of liquid is essential with regard to the understanding of thermodynamic and fluid dynamic compressor behavior. An open-loop impeller test facility was designed to investigate the wet gas performance, aerodynamic stability, and operation range. The facility was made adaptable for different impeller and diffuser geometries. In this paper, the wet gas test facility and experimental work concerning the impact of wet gas on a representative full-scale industrial impeller are presented. The centrifugal compressor performance was examined at high gas volume fractions and atmospheric inlet conditions. Air and water were used as experimental fluids. Dry and wet gas performance was experimentally verified and analyzed. The results were in accordance with previous test data and indicated a stringent influence of the liquid phase. Air/water tests at atmospheric conditions were capable of reproducing the general performance trend of hydrocarbon wet gas compressor tests at high pressure.


Author(s):  
Kumarswamy Karpanan ◽  
Craig Hamilton-Smith

Subsea oil and gas production involves assemblies such as trees, manifolds, and pipelines that are installed on sea floor. Each of these components is exposed to severe working conditions throughout its operational life and is difficult and expensive to repair or retrieve installed. During installation and operation, a rig/platform and several supply vessels are stationed on the waterline directly above the well and installed equipment below. If any object is to be dropped overboard, it presents a hazard to the installed equipment. A subsea tree comprises of a number of critical components such as valves and hydraulic actuators, in addition to several electrical components such as the subsea control module and pressure/temperature gauges. Their ability to operate correctly is vital to the safe production of oil and gas. If an object were to impact and damage these components, resulting in their inability to operate as intended, the consequences could be severe. In this paper, a typical subsea tree frame is analyzed to ensure its ability to withstand the impact from an object accidentally dropped overboard. This was accomplished using nonlinear dynamic Finite Element Analysis (FEA). In this study, the framework was struck by a rigid body at terminal velocity, resulting in a given impact energy. Displacements and resultant strain values at critical locations were then compared to allowable limits to ensure compliance to the design requirements.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


2021 ◽  
Author(s):  
D. Nathan Meehan

Abstract Is this the end of petroleum engineering as we know it? This prescient question led to the most downloaded paper from onepetro.org in 2019. The events of 2020 resulted in massive layoffs, decreased hiring and many fewer students studying petroleum engineering. In the 2019 paper the authors claimed that the future would hold fewer petroleum engineering jobs and very different types of jobs. This paper incorporates a broader range of data and proposes some specific ways to improve prospects for the discipline of petroleum engineering. The opportunity for a near-term recovery is very high as the world overcomes COVID-19 issues, oil demand recovers and the impact of chronic underinvestment in oil and gas production looms. The world's largest producers have very different abilities to respond to a near-term uptick in demand. Energy transition pressures continue to cap growth in demand; however, demand for petroleum engineers is expected to grow under almost every scenario, but not to pre-2015 levels. Increased demand in CCUS and jobs that improve sustainability of oil and gas will continue to outpace conventional jobs. Data analytics will play an increasingly large role in engineering activities. The "Is it the end?" paper started with a question, a question that I first heard asked in 1977 at the SPE Annual Fall Technical Conference and Exhibition in Denver to 1972 SPE President M. Scott Kraemer. I have heard it many times since then and asked it many times. "Would you recommend that your son or daughter study petroleum engineering?" The answer to that question was pretty easy and unanimously positive in 1977. Keep this question in mind as we review what has happened since the prior paper came out.


Author(s):  
Ikenna A. Okaro ◽  
Longbin Tao

This paper describes how the operation of deep, subsea oil wells can be analyzed and optimized using artificial lift systems. A modest explanation was offered about an enhanced Hubbert model for determining production targets at pre-feed phase of project. In addition, the impact of artificial lifts on the economics of subsea wells facing hyperbolic production decline was illustrated. The principle of Nodal analysis was highlighted and applied to optimize a proposed subsea oil production case. Configurations of a nominally rated rod pump, a multiphase pump and an electrical submersible pump were modelled in a steady-state flow using Pipesim software and the simulated results which were functions of liquid flow rate and pressure distribution across the production system exposed the behavior of the system. The results showed that over 100% volumetric efficiency was achieved using a combination of electrical submersible pump at the bottom hole and a multiphase pump at riser base. A guide is presented on how to predict, analyze and enhance the recovery curve of subsea oil production using artificial lifts and nodal-system analysis. The benefit of this work is an enabling cost-effective approach for ensuring production assurance in deep water oil and gas production.


1974 ◽  
Vol 188 (1) ◽  
pp. 11-24 ◽  
Author(s):  
L. C. Allcock

Development of offshore oil and gas production from the continental shelf and in even deeper water will be dependent on engineers. It is of primary importance to understand the nature of the oil and gas production industry in order to follow more clearly the contribution that will be required from many of the professional branches of engineering, and a great deal of new technology must be developed in order that the problems of the future may be overcome. The difficulty may not be in defining the future engineering of oil and gas development but in finding engineers in sufficient numbers to meet the demand.


Sign in / Sign up

Export Citation Format

Share Document