scholarly journals Unprocessed calcareous fly ash as a partial cement replacement in self-compacting concrete

2021 ◽  
Vol 6 (2) ◽  
pp. 42-52
Author(s):  
Adnan MUJKANOVIC ◽  
Dzenana BECIRHODZIC ◽  
Ilhan BUSATLIC ◽  
Marina JOVANOVIC
2021 ◽  
Vol 9 (2) ◽  
pp. 71-78
Author(s):  
O. M. A. Daoud ◽  
O. S. Mahgoub

Self-compacting concrete (SCC) is an innovative construction material in the construction industry. It is a highly fluid and stable concrete that flows under its own weight and fills completely the formwork. The SCC requires high powder content (mainly of cement) up to 600kg/ to achieve its properties. This will be problematic because increasing the cement content is not feasible, and may cause high cost and some other technical problems such as higher heat of hydration and higher drying shrinkage. This paper investigates the effect of limestone powder (LSP) on fresh and hardened properties of SCC due to the use of LSP as a partial cement replacement. For comparison, a control sample of concrete was prepared without LSP to compare it with the various samples containing different percentages of LSP as a partial replacement of cement. Four mixes with a constant amount of (superplasticizer, sand, coarse aggregate, and water) at various replacement levels of 0%, 10%, 20% and 30% from the cement weight were prepared. The experimental results show that the LSP can be effectively used as a partial cement replacement on SCC to reduced cost and enhanced the performance of SCC in fresh and hardened stages.  


Author(s):  
Khairunisa Muthusamy ◽  
Mohamad Safwan Jaafar ◽  
Nili Wahida Azhar ◽  
Nurazzimah Zamri ◽  
Nadiah Samsuddin ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 11-16
Author(s):  
Fauna Adibroto ◽  
Etri Suhelmidawati ◽  
Azri Azhar Musaddiq Zade

Various research in concrete sector has been done as an effort to increase quality of concrete, materials and method, materials technology and implementation techniques obtained from the results of the experiments and experiments are intended to answer the increasing demands on the use of concrete and overcome the constraints that often occur in the implementation of work in the field. One way to increase the strength of concrete is to use a cement replacement that is fly ash.The purpose of this research is to know the influence of partial cement replacement effect with fly ash to the concrete compressive strength, in order to be applicated for rigid pavement in road design. The variations of composition in the addition of fly ash is 0%, 10%, 12.5%, 15%, 20% and 25% of the weight of cement. Concrete compressive strength is 40 MPa and tested at 7 days and 28 days. This research tested concrete with cylinder test object (diameter 150 mm and height 300 mm) with 30 sample and consist of 6 variation. From this research, optimum compressive strength at 10% variation is 30,770 MPa. The lowest compressive strength is in the 25% variation with 20,046 MPa.The highest compressive strength obtained from the research is 30.770 Mpa.


2014 ◽  
Vol 567 ◽  
pp. 393-398 ◽  
Author(s):  
Muhd Fadhil Nuruddin ◽  
Norzaireen Mohd Azmee ◽  
Kok Yung Chang

The benefits of Microwave Incinerated Rice Husk Ash (MIRHA) as partial cement replacement materials in DSCC mixes has led to the research on the possibilities of combining both MIRHA and fly ash as an addition in DSCC replacing up to 20% of cement volume whilst maintaining satisfactory properties. The addition of both materials can improve concrete properties and reduce the cost of DSCC production. These supplementary cementitious materials are expected to give positive effects on the concrete abrasion and impact resistance. The incorporations of both MIRHA and fly ash in DSCC as cement replacement materials are considered as a new type of concrete. Therefore, it is important to have a complete knowledge on the behaviour of the composite material when being subjected to repetitive dynamic loading. The test results showed that MIRHA and fly ash combination in DSCC improved both abrasion and impact resistance of DSCC compared to reference specimens.


2015 ◽  
Vol 754-755 ◽  
pp. 447-451 ◽  
Author(s):  
Sunarmasto ◽  
Stefanus Adi Kristiawan

Self-compacting concrete has been produced incorporating fly ash as cement replacement. The hardened properties of this concrete in term of compressive strength and porosity are investigated. The main goal of this investigation is to observe the effect of fly ash on those properties. The range of fly ash replacement level is 50%-70% by weight of the total binder. The compressive strength self-compacting concrete is reduced when fly ash replacement level is increased. The decrease in strength is more distinctive at 28 days of age compared to that of earlier or later age. Porosity as measured by vacuum saturation method tends to increase as fly ash replacement level is increased. A good correlation exists between porosity and compressive strength.


Sign in / Sign up

Export Citation Format

Share Document