scholarly journals Low-Cost Prosthesis for People with Transradial Amputations

2020 ◽  
Vol 23 (2) ◽  
pp. 167-177
Author(s):  
Hneen Mahdi Jaber ◽  
Mohammed A. Mohammed ◽  
Nabel Kadhim Abd al-Sahib

Prosthetic is an artificial tool that replaces part of the human frame absent because of ailment, damage, or distortion. The current activities in Iraq draw interest to the upper limb discipline because of the growth in variety of amputees and. It is necessary to do extensive researches in this subject to help lessen the struggling of patients. This paper describes the design and development of low-cost prosthesis for people with transradial amputations. The presented design involves a hand with five fingers moving by means of a gear box mechanism. The design of this artificial hand allows five degrees of freedom(5DOF), one degree of freedom for each finger. The artificial hand works by an actuation system (6V) Polou motor with gear ratio equal to 50:1 due to its compactness and cheapness. The designed hand was manufactured by a 3D printing process using polylacticacid material (PLA). Some experimental were accomplished using the designed hand for gripping objects. Initially the EMG signal was recorded when the muscle contracted in one second, two seconds, three seconds. The synthetic hand was able to produce range of gesture and grasping moves separately just like the actual hand by using KNN classification which are complete hand Pinch, fist, and jack chuck.  The simulation of the fingers movements was achieved using ANSYS software to analysis the movement (pinch, fist, and jack chuck), obtain bested of stress influencer at each finger, and maximum deformation at each movement.

2020 ◽  
Vol 16 (2) ◽  
pp. 24-33
Author(s):  
Haneen Mahdi Jaber ◽  
Muhammed Abdul -Sattar ◽  
Nabel Kadhim Abd al-Sahib

Prosthetic is an artificial tool that replaces a member of the human frame that is  absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number  of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients.  This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of  under actuated system. The used motor is 6V Polulu high-power carbon brush micro metal gearmotor with gear ratio equal to 50:1. The motor was chosen due to its compactness and cheapness. The hand manufacturing process was done using  a 3D printer and using polylactic acid material. Numbers of experiments were accomplished using the designed hand for gripping objects. Initially, the electromyography signal (EMG) was recorded when the muscle contracted in one second, two seconds, three seconds. The synthetic hand was able to produce a range of gestures and grasping for objects.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 137
Author(s):  
Larisa Dunai ◽  
Martin Novak ◽  
Carmen García Espert

The present paper describes the development of a prosthetic hand based on human hand anatomy. The hand phalanges are printed with 3D printing with Polylactic Acid material. One of the main contributions is the investigation on the prosthetic hand joins; the proposed design enables one to create personalized joins that provide the prosthetic hand a high level of movement by increasing the degrees of freedom of the fingers. Moreover, the driven wire tendons show a progressive grasping movement, being the friction of the tendons with the phalanges very low. Another important point is the use of force sensitive resistors (FSR) for simulating the hand touch pressure. These are used for the grasping stop simulating touch pressure of the fingers. Surface Electromyogram (EMG) sensors allow the user to control the prosthetic hand-grasping start. Their use may provide the prosthetic hand the possibility of the classification of the hand movements. The practical results included in the paper prove the importance of the soft joins for the object manipulation and to get adapted to the object surface. Finally, the force sensitive sensors allow the prosthesis to actuate more naturally by adding conditions and classifications to the Electromyogram sensor.


Author(s):  
A. Salimi ◽  
J. Mohammadpour ◽  
K. Grigoriadis ◽  
N. V. Tsekos

In this paper, we develop a numerical mixed flexible-rigid body model to take into account the effects of the external disturbances acting on a flexible manipulator secondary to the oscillatory transmitral blood flow in the left ventricle. The manipulator is made of a flexible rubber-like material to further extend the surgical robotic-based catheters’ degrees of freedom and steer-ability in beating-heart prosthetic aortic valve implantation procedure. Along with the developed numerical model, a detailed description of the catheter’s mechanical architecture and the actuation system is also provided. Necessity of employing such a model for the designed system is clearly justified using simulation studies.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


2020 ◽  
Vol 87 (s1) ◽  
pp. s79-s84
Author(s):  
Qummar Zaman ◽  
Senan Alraho ◽  
Andreas König

AbstractThe conventional method for testing the performance of reconfigurable sensory electronics of industry 4.0 relies on the direct measurement methods. This approach gives higher accuracy but at the price of extremely high testing cost and does not utilize the new degrees of freedom for measurement methods enabled by industry 4.0. In order to reduce the test cost and use available resources more efficiently, a primary approach, called indirect measurements or alternative testing has been proposed using a non-intrusive sensor. Its basic principle consists in using the indirect measurements, in order to estimate the sensory electronics performance parameters without measuring directly. The non-intrusive property of the proposed method offers better performance of the sensing electronics and virtually applicable to any sensing electronics. Efficiency is evaluated in terms of model accuracy by using six different classical metrics. It uses an indirect current-feedback instrumentation amplifier (InAmp) as a test vehicle to evaluate the performance parameters of the circuit. The device is implemented using CMOS 0.35 μm technology. The achieved maximum value of average expected error metrics is 0.24, and the lowest value of correlation performance metrics is 0.91, which represent an excellent efficiency of InAmp performance predictor.


Sign in / Sign up

Export Citation Format

Share Document